Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHOU Weiming, DING Chunxiang, PAN Mingzhu. Research progress of self-healing coatings based on dynamic covalent crosslinking[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1381-1394. doi: 10.13801/j.cnki.fhclxb.20220424.002
Citation: ZHOU Weiming, DING Chunxiang, PAN Mingzhu. Research progress of self-healing coatings based on dynamic covalent crosslinking[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1381-1394. doi: 10.13801/j.cnki.fhclxb.20220424.002

Research progress of self-healing coatings based on dynamic covalent crosslinking

doi: 10.13801/j.cnki.fhclxb.20220424.002
Funds:  National Natural Science Foundation of China (32171704)
  • Received Date: 2022-03-11
  • Accepted Date: 2022-04-16
  • Rev Recd Date: 2022-04-11
  • Available Online: 2022-04-24
  • Publish Date: 2023-03-15
  • It is an important barrier for coating materials to resist external stress damage, with the development of science and technology, intelligent coating can endow the original coating with advanced functions such as fluorescence, antibacterial, detection and sensing, etc. However, it will inevitably suffer from mechanical damage (such as scratches, scratches, etc.) and macroscopic or microscopic damage caused by stress mismatch with internal components, which will lead to cracks or even cracks, and structural damage will lead to functional weakening or even disappearance. Therefore, higher requirements were put forward for the structural stability and functional continuity of the coating. The self-healing coatings, based on dynamic covalent cross-linking network, can establish a thermodynamic equilibrium between the raw materials molecules and product molecules, and obtain the self-healing capacity via the recombination of dynamic network. The activation energy value of dynamic network not only directly reflects ease of healing reaction (i.e., reaction rate), but also affects the mechanical performance of the resultant materials. In this paper, we discuss and clarify the relationship between the construction of self-healing network and activation energy of reaction according to the chemical thermodynamics, subsequently, we comment the applications of the self-healing coatings with dynamic covalent cross-linking network in the fields of traditional coatings, intelligent sensor, photochromic, biological medicine. Finally, we prospect the developed bottleneck and perspective of the dynamic covalent self-healing coatings.

     

  • loading
  • [1]
    YE J, LIU H M, XIONG J. Preparation and properties of fluorescent cellulosic paper via surface coating of anionic cellulose ethers/rare earth metal ions composites[J]. Industrial & Engineering Chemistry Research,2019,58(6):2370-2378.
    [2]
    SONG L, XIAO Y F, GAN L, et al. The effect of antibacterial ingredients and coating microstructure on the antibacter-ial properties of plasma sprayed hydroxyapatite coatings[J]. Surface & Coatings Technology,2012,206(11-12):2986-2990.
    [3]
    LEE H J, KIM B C, OH M K, et al. A sensitive and reliable detection of thrombin via enzyme-precipitate-coating-linked aptamer assay[J]. Chemical Communications,2012,48:5971-5973. doi: 10.1039/c2cc30710c
    [4]
    BU Y B, SHEN T Y, YANG W K, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin[J]. Science Bulletin,2021,66(18):1849-1857. doi: 10.1016/j.scib.2021.04.041
    [5]
    李健, 王颖, 高新蕾. 智能涂层−类生物表面活性智能涂层[J]. 材料保护, 2006, 39(1):36-39. doi: 10.3969/j.issn.1001-1560.2006.01.011

    LI Jian, WANG Ying, GAO Xinlei. Intelligent coating—Intelligent coating of biological surface activity[J]. Materials Protection,2006,39(1):36-39(in Chinese). doi: 10.3969/j.issn.1001-1560.2006.01.011
    [6]
    王林, 丁坤英, 林小娉, 等. 8 YSZ双层热障涂层缺陷演变与微裂纹水浸超声宏观检测[J]. 无机材料学报, 2019, 34(12):1265-1271. doi: 10.15541/jim20190135

    WANG Ling, DING Kunying, LING Xiaoping, et al. Defect evolution and microcracks of 8 YSZ double-layer thermal barrier coatings by water immersion ultrasound macroscopic detection[J]. Journal of Inorganic Materials,2019,34(12):1265-1271(in Chinese). doi: 10.15541/jim20190135
    [7]
    崔静, 郭玉珠, 庞铭, 等. 超音速等离子喷涂ZrO2涂层的缺陷分析与力学性能[J]. 金属热处理, 2019, 45(8):216-221.

    CUI Jing, GUO Yuzhu, PANG Ming, et al. Defect analysis and mechanical properties of supersonic plasma sprayed ZrO2 coating[J]. Heat Treatment of Metals,2019,45(8):216-221(in Chinese).
    [8]
    郭金利, 张雁恒, 卢宁, 等. 面向热障涂层内部界面缺陷的快速检测装置[J]. 实验力学, 2021, 36(4):471-479. doi: 10.7520/1001-4888-21-013

    GUO Jinli, ZHANG Yanheng, LU Ning, et al. Rapid detection instrument for interface defects of thermal barrier coating[J]. Journal of Experimental Mechanics,2021,36(4):471-479(in Chinese). doi: 10.7520/1001-4888-21-013
    [9]
    CRALL M D, KELLER M W. Targeted self-healing by magnetically guiding microcapsules[J]. ACS Applied Materials & Interfaces,2017,9(7):6504-6511.
    [10]
    ROWAN S J, CANTRILL S J, COUSINS G R L, et al. Dynamic covalent chemistry[J]. Angewandte Chemie-International Edition,2002,41(6):898-952. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
    [11]
    BOUTELLE R C, NORTHROP B H. Substituent effects on the reversibility of furan-maleimide cycloadditions[J]. Journal of Organic Chemistry,2011,76(19):7994-8002. doi: 10.1021/jo201606z
    [12]
    PODGÓRSKI M, SPURGIN N, MAVILA S, et al. Mixed mechanisms of bond exchange in covalent adaptable networks: Monitoring the contribution of reversible exchange and reversible addition in thiol-succinic anhydride dynamic networks[J]. Polymer Chemistry,2020,11(33):5365-5376. doi: 10.1039/D0PY00091D
    [13]
    NICOLAY R, KAMADA J, VAN WASSEN A. Responsive gels based on dynamic covalent trithiocarbonate cross-linker[J]. Macromolecules,2010,43(9):4355-4361. doi: 10.1021/ma100378r
    [14]
    ZHANG Z P, RONG M Z, ZHANG M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science,2018,80:39-93. doi: 10.1016/j.progpolymsci.2018.03.002
    [15]
    黄华奇, 黄荣彬. 认识化学反应平衡[J]. 大学化学, 2016, 31(9):68-76. doi: 10.3866/pku.DXHX201512016

    HUANG Huaqi, HUANG Rongbin. On the chemical equilibrium[J]. University Chemical,2016,31(9):68-76(in Chinese). doi: 10.3866/pku.DXHX201512016
    [16]
    MAES F, MONTARNAL D, CANTOURNET S, et al. Activation and deactivation of self-healing in supramolecular rubbers[J]. Soft Matter,2012,8(5):1681-1687. doi: 10.1039/C2SM06715C
    [17]
    DELAHAYE M, WINNE J M, DU PREZ F E. Internal catalysis in covalent adaptable networks: Phthalate monoester transesterification as a versatile dynamic cross-linking chemistry[J]. Journal of the American Chemical Society,2019,141(38):15277-15287. doi: 10.1021/jacs.9b07269
    [18]
    FU F Y, HUANG M Q, ZHANG W L, et al. Thermally assisted self-healing behavior of anhydride modified polybenzoxazines based on transesterification[J]. Scientific Reports,2018,8:10325. doi: 10.1038/s41598-018-27942-9
    [19]
    YANG Y, DU F S, LI Z C. Thermally healable and reprocessable polymethacrylate networks based on diol-mediated metathesis of 6-membered boronic esters[J]. Polymer Chemistry,2020,11(11):1860-1870. doi: 10.1039/C9PY01546A
    [20]
    SMITH B J, DICHTEL W R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions[J]. Journal of the American Chemical Society,2014,136(24):8783-8789. doi: 10.1021/ja5037868
    [21]
    JORDI R A, MOTOYUKI S, DOMINIK M. Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes[J]. Chemistry-A European Journal,2009,15(48):13331-13335. doi: 10.1002/chem.200902573
    [22]
    夏嘉豪, 李宏斌, 许华平. 含硫/硒动态共价键强弱的测定[J]. 高分子学报, 2020, 51(2):205-213. doi: 10.11777/j.issn1000-3304.2019.19166

    XIA Jiahao, LI Hongbin, XU Huaping. Measuring the strength of S/Se based dynamic covalent bonds[J]. Acta Polymerica Sinica,2020,51(2):205-213(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19166
    [23]
    JI S B, XIA J H, XU H P. Dynamic chemistry of selenium: Se—N and Se—Se dynamic covalent bonds in polymeric systems[J]. ACS Macro Letters,2016,5(1):78-82. doi: 10.1021/acsmacrolett.5b00849
    [24]
    GOH M J, SHIN H, KIM C B. Manipulating bond exchange rates invitrimer-hexagonal boron nitride nanohybrids via heat capacity enhancement[J]. Journal of Applied Polymer Science,2021,12(138):50079.
    [25]
    CHANG H S, GAO J S, DANIEL A T, et al. Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry[J]. Chemical Science,2015,6(8):4550-4560. doi: 10.1039/C5SC01305D
    [26]
    LEE S H, SHIN S R, LEE D S. Self-healing of cross-linked PU via dual-dynamic covalent bonds of a schiff base from cystine and vanillin[J]. Materials and Design,2019,172:107774. doi: 10.1016/j.matdes.2019.107774
    [27]
    ZHAO S S, LI L L, LIU X R, et al. Crystal structure, thermal decomposition and interaction withct-dna of three 2-hydroxy-1-naphthaldehyde acyl hydrazones[J]. Acta Physico-Chimica Sinica,2017,33(2):356-363. doi: 10.3866/PKU.WHXB201610191
    [28]
    ZHANG L H, ROWAN S J. Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylurea-urethane) networks[J]. Macromolecules,2017,50(13):5051-5060. doi: 10.1021/acs.macromol.7b01016
    [29]
    SHI J X, ZHENG T Z, ZHANG Y, et al. Cross-linked polyurethane with dynamic phenol-carbamate bonds: Properties affected by the chemical structure of isocyanate[J]. Polymer Chemistry,2021,12(16):2421-2432. doi: 10.1039/D1PY00157D
    [30]
    LIU J, LIU Y Y, WANG Y, et al. Disulfide bonds and metal-ligand co-crosslinked network with improved mechanical and self-healing properties[J]. Materials Today Communications,2017,13:282-289. doi: 10.1016/j.mtcomm.2017.10.013
    [31]
    ZHANG J S, HUANG J, ZHU G Q. Self-healing, recyclable, and shape memory UV-curable coatings derived from tung oil and malic acid[J]. Green Chemistry,2021,23(16):5875-5886. doi: 10.1039/D1GC01726H
    [32]
    MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science,2011,334(6058):965-968. doi: 10.1126/science.1212648
    [33]
    CROMWELL O R, CHUNG J Y, GUAN Z B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds[J]. Journal of the American Chemical Society,2015,137(20):6492-6495. doi: 10.1021/jacs.5b03551
    [34]
    王怡, 冯展彬 左洪礼, 等. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019, 50(5):485-495. doi: 10.11777/j.issn1000-3304.2019.18280

    WANG Yi, FENG Zhanbin, ZUO Hongli, et al. Preparation of thermally reversible silicone rubber/carbon nanotubes composite with high electrical conductivity based on Diels-Alder reaction[J]. Acta Polymerica Sinica,2019,50(5):485-495(in Chinese). doi: 10.11777/j.issn1000-3304.2019.18280
    [35]
    ZHAO J, XU R, LUO G X, et al. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer[J]. Journal of Materials Chemistry B,2016,4(5):982-989. doi: 10.1039/C5TB02036K
    [36]
    BAI J, SHI Z X. Dynamically cross-linked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior[J]. ACS Applied Materials & Interfaces,2017,9:27213-27222.
    [37]
    LI X Y, LIN B N, LI H B, et al. Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction[J]. Applied Catalysis B: Environmental,2018,239:254-259. doi: 10.1016/j.apcatb.2018.08.021
    [38]
    DING X Y, LI G, ZHANG P, et al. Constructing thermally reversible dynamic hydrogels via catalysis-free knoevenagel condensation[J]. ACS Macro Letters,2020,9(6):830-835. doi: 10.1021/acsmacrolett.0c00330
    [39]
    WU H, TIAN M, ZHANG L, et al. New understanding of morphology evolution of thermoplastic vulcanizate (TPV) during dynamic vulcanization[J]. ACS Sustainable Che-mistry & Engineering,2015,3(1):26-32.
    [40]
    JI S B, CAO W, YU Y, et al. Dynamic diselenide bonds: Exchange reaction induced by visible light without catalysis[J]. Angewandte Chemie-International Edition,2014,53(26):6781-6785. doi: 10.1002/anie.201403442
    [41]
    JI S B, EL-MARD H, SMET M, et al. Selenium containing macrocycles: Transformation between Se—N/Se—S/Se—Se bonds[J]. Science China-Chemistry,2017,60(9):1191-1196. doi: 10.1007/s11426-017-9059-4
    [42]
    FAN F Q, JI S B, SUN C Z, et al. Wavelength-controlled dynamic metathesis: A light-driven exchange reaction between disulfide and diselenide bonds[J]. Angewandte Chemie International Edition,2018,57(50):16426-16430. doi: 10.1002/anie.201810297
    [43]
    DU Y Z, YU G X, DAI X Y, et al. Highly stretchable, self-healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion monitoring[J]. ACS Applied Materials & Interfaces,2020,12(46):51987-51998.
    [44]
    LI S Z, PEI M J, WAN T T, et al. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials[J]. Carbohydrate Polymers,2020,250:116922. doi: 10.1016/j.carbpol.2020.116922
    [45]
    NGUYEN R, HUC I. Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry[J]. Chemical Communications,2003,8:942-943.
    [46]
    SHEN J F, WANG X M, AN H, et al. Cross-linking induced thermoresponsive hydrogel with light emitting and self-healing property[J]. Journal of Polymer Science Part A: Polymer Chemistry,2019,57(8):869-877. doi: 10.1002/pola.29337
    [47]
    MEMON H, WEI Y, ZHANG L Y, et al. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites[J]. Composites Science and Technology,2020,199:108314. doi: 10.1016/j.compscitech.2020.108314
    [48]
    LEHN J M. Dynamers: Dynamic molecular and supramolecular polymers[C]. Progress in Polymer Science. Paris: Pergamon-Elsevier Science LTD, 2005, 30(8-9): 814-831.
    [49]
    HE L, JIANG Y, TU C, et al. Self-assembled encapsulation systems with pH tunable release property based on reversible covalent bond[J]. Chemical Communications,2010,46(40):7569-7571. doi: 10.1039/c0cc02654a
    [50]
    DAI X Y, DU Y Z, WANG Y S, et al. Stretchable self-healing polymeric networks with recyclability and dual responsiveness[J]. ACS Applied Materials & Interfaces,2020,2(3):1065-1072.
    [51]
    李苗苗, 吕全乾, 朱锦涛, 等. 基于聚硼硅氧烷的自愈合光子晶体弹性体[J]. 高分子学报, 2019, 50(3):271-280. doi: 10.11777/j.issn1000-3304.2019.18213

    LI Miaomiao, LYU Quanqian, ZHU Jintao, et al. Polyborosiloxane-based photonic elastomers with self-healing capability[J]. Acta Polymerica Sinica,2019,50(3):271-280(in Chinese). doi: 10.11777/j.issn1000-3304.2019.18213
    [52]
    WANG X F, ZHAO K F, HUANG X W, et al. Preparation and properties of self-healing polyether amines based on Diels-Alder reversible covalent bonds[J]. High Performance Polymers,2019,31(1):51-62. doi: 10.1177/0954008317750727
    [53]
    LIU R T, LI S H, YAO N, et al. Castor oil-based polyurethane networks containing diselenide bonds: Self-healing, shape memory, and high flexibility[J]. Progress in Organic Coatings,2022,163:106615. doi: 10.1016/j.porgcoat.2021.106615
    [54]
    HUANG J, ZHANG J S, ZHU G Q, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid[J]. Progress In Organic Coatings,2021,159:106391. doi: 10.1016/j.porgcoat.2021.106391
    [55]
    KHAN A, RABNAWAZ M. Base-layer-driven self-healing materials[J]. ACS Applied Polymer Materials,2021,3(8):3922-3928. doi: 10.1021/acsapm.1c00476
    [56]
    LIANG Z, ZHANG J Y, WU C. et al. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring[J]. Biosensors and Bioelectronics,2020,155:112105. doi: 10.1016/j.bios.2020.112105
    [57]
    DING J, QIAO Z, ZHANG Y S, et al. NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and conductivity for human-machine interaction[J]. Carbohydrate Polymers,2020,247:116686. doi: 10.1016/j.carbpol.2020.116686
    [58]
    HUANG Q Y, TANG Z H, WANG D, et al. Engineering segregated structures in a cross-linked elastomeric network enabled by dynamic cross-link reshuffling[J]. ACS Macro Letters,2021,10(2):231-236. doi: 10.1021/acsmacrolett.0c00852
    [59]
    WANG P G, PEI D F, WANG Z B. et al. Biocompatible and self-healing ionic gel skin as shape-adaptable and skin adhering sensor of human motions[J]. Chemical Engineering Journal,2020,398:12550.
    [60]
    ZHANG Y D, DING Z Y, LIU Y, ed al. White-light-emitting hydrogels with self-healing properties and adjustable emission colors[J]. Journal of Colloid and Interface Science,2021,582:825-833. doi: 10.1016/j.jcis.2020.08.080
    [61]
    GUAN S C, LI Y, CHENG C, et al. Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing[J]. International Journal of Biological Macromolecules,2020,164:2418-2431. doi: 10.1016/j.ijbiomac.2020.08.108
    [62]
    JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie-International Edition,2015,54(18):5360-5363. doi: 10.1002/anie.201501193
    [63]
    VIJAYAKUMAR C, PRAVEEN V K, AJAYAGHOSH A. RGB emission through controlled donor self-assembly and modulation of excitation energy transfer: A novel strategy to white-light-emitting organogels[J]. Advanced Materials,2009,21(20):2059-2063. doi: 10.1002/adma.200802932
    [64]
    ZHAO Y J, ZHAO X W, TANG B C, et al. Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free dna detection[J]. Advanced Functional Materials,2010,20(6):976-982. doi: 10.1002/adfm.200901812
    [65]
    NIU W B, CAO X F, WANG Y P, et al. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond[J]. Advanced Functional Materials, 201, 31(13): 2009017.
    [66]
    ZHANG J W, ZHANG X Z, HONG Y, et al. Tissue-adhesive paint of silk microparticles for articular surface cartilage regeneration[J]. ACS Applied Materials & Interfaces,2020,12(20):22467-22478.
    [67]
    SHAO C Y, MENG L, WANG M, et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocompo-site hydrogels[J]. ACS Applied Materials & Interfaces,2019,11(6):5885-5895.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1121) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return