Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
LIN Xiaoting, LIU Jian, SU Zhou, et al. Synthesis of copper nanowires and its application in flexible electronic devices[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002
Citation: LIN Xiaoting, LIU Jian, SU Zhou, et al. Synthesis of copper nanowires and its application in flexible electronic devices[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002

Synthesis of copper nanowires and its application in flexible electronic devices

doi: 10.13801/j.cnki.fhclxb.20230227.002
Funds:  Natural Science Basic Research Plan in Shaanxi Province of China (2022JM-236)
  • Received Date: 2022-12-05
  • Accepted Date: 2023-02-16
  • Rev Recd Date: 2023-01-30
  • Available Online: 2023-02-28
  • Publish Date: 2023-08-15
  • Copper nanowires not only have excellent electrical conductivity comparable to silver, but also have good light transmittance and flexural resistance due to the size effect at the nanoscale. In addition, it is far cheaper than gold and silver, hence it is an ideal electrode material for preparing flexible electronic devices. The synthesis methods of copper nanowires were systematically reviewed, such as template method, vapor deposition method, electrospinning technology, and chemical liquid phase method. Purification technologies based on water-hydrophobic organic solvent system and acid treatment for copper nanowires were introduced. Various cladding materials with core-shell structure and corresponding cladding technologies used to improve the oxidation resistance and stability of copper nanowires were listed, including inert metals, carbon-based materials, and organic polymer materials. The application status of flexible electronic devices integrating high-quality copper nanowires (or their composites) with flexible substrates (paper-based, polyurethane, and polyethylene terephthalate, etc.) in the fields of flexible transparent electrodes, energy storage/conversion, and flexible sensors were concluded. Finally, the challenges faced in practical application were prospected.

     

  • loading
  • [1]
    WANG J L, HASSAN M, LIU J W, et al. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives[J]. Advanced Science, 2018, 30(48): 1803430-1803459.
    [2]
    HASSAN M, ABBAS G, LI N, et al. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives[J]. Advanced Materials Technologies,2021,7(3):2100773-2100816.
    [3]
    FENG Y, ZHU J. Copper nanomaterials and assemblies for soft electronics[J]. Science China Materials,2019,62(11):1679-1708. doi: 10.1007/s40843-019-9468-5
    [4]
    CLAVER U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials,2021,23(5):2001187. doi: 10.1002/adem.202001187
    [5]
    LI W, SUN Q, LI L, et al. The rise of conductive copper inks: Challenges and perspectives[J]. Applied Materials Today,2020,18:100451. doi: 10.1016/j.apmt.2019.100451
    [6]
    LI Z, CHANG S, KHUJE S, et al. Recent advancement of emerging nano copper-based printable flexible hybrid electronics[J]. ACS Nano,2021,15(4):6211-6232. doi: 10.1021/acsnano.1c02209
    [7]
    方鲲, 彭睿, 李玫, 等. 先进柔性电子材料及应用进展[J]. 新材料产业, 2022, 326(1):55-58.

    FANG Kun, PENG Rui, LI Mei, et al. Advanced flexible electronic materials and application progress[J]. Advanced Materials Industry,2022,326(1):55-58(in Chinese).
    [8]
    李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12):197-202, 212. doi: 10.13475/j.fzxb.20210203707

    LI Xiaoyan, ZHANG Zhihui, YAO Jiming. Research progress on fabrication of flexible microcapacitors based on printing technology[J]. Journal of Textile Science,2022,43(12):197-202, 212(in Chinese). doi: 10.13475/j.fzxb.20210203707
    [9]
    DANG R, SONG L, DONG W, et al. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics[J]. ACS Applied Materials & Interfaces,2014,6(1):622-629.
    [10]
    WANG Y, LIU P, ZENG B, et al. Facile synthesis of ultralong and thin copper nanowires and its application to high-performance plexible transparent conductive electrodes[J]. Nanoscale Research Letters,2018,13(1):78. doi: 10.1186/s11671-018-2486-5
    [11]
    崔铮, 邱松, 陈征, 等. 印刷电子学材料、技术及其应用[M]. 北京: 高等教育出版社, 2012: 68.

    CUI Zheng, QIU Song, CHEN Zheng, et al. Printing electronics-materials, technologies and applications[M]. Beijing: High education press, 2012: 68(in Chinese).
    [12]
    高琪, 阚彩侠, 李俊龙, 等. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32:1604-1622. doi: 10.3866/PKU.WHXB201604182

    GAO Qi, KAN Caixia, LI Junlong, et al. Pregress in liquid-phase preparation and surface modification of copper nanowires[J]. Acta Physico Chimica Sinica,2016,32:1604-1622(in Chinese). doi: 10.3866/PKU.WHXB201604182
    [13]
    AZIZ A, ZHANG T, LIN Y H, et al. 1D copper nanowires for flexible printable electronics and high ampacity wires[J]. Nanoscale,2017,9(35):13104-13111. doi: 10.1039/C7NR02478A
    [14]
    XU L, YANG Y, HU Z W, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid[J]. ACS Nano,2016,10(3):3823-3834. doi: 10.1021/acsnano.6b00704
    [15]
    LI W, YANG Y, ZHANG B, et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibi-lity[J]. Advanced Materials Interfaces,2018,5(19):1800798. doi: 10.1002/admi.201800798
    [16]
    PARK H J, JO Y, CHO M K, et al. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: Flash-light-sintered, kinetically-controlled microstructure[J]. Nanoscale,2018,10(11):5047-5053. doi: 10.1039/C8NR00200B
    [17]
    FAN G, YU L, DONGA L. Template-assisted synthesis and catalytic property of copper nanowires[J]. ECS Transactions,2013,53(34):29-34. doi: 10.1149/05334.0029ecst
    [18]
    CHOI H, PARK S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition[J]. Journal of the American Chemical Society,2004,126(20):6248-6249. doi: 10.1021/ja049217+
    [19]
    石晓磊. 电纺CuNWs透明电极在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2019.

    SHI Xiaolei. Application of electrospun CuNWs transparent electrode in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese).
    [20]
    XU J, ZHU X, XIA S, et al. Au-catalyzed ultrathin copper nanowires[J]. Journal of Materials Chemistry A,2022,10(48):25431-25436. doi: 10.1039/D2TA07668C
    [21]
    范国威. 模板法制备铜纳米线及其催化生长纳米碳纤维的研究[D]. 青岛: 青岛科技大学, 2014.

    FAN Guowei. Preparation of copper nanowires by template method and catalytic growth of carbon nanofibers[D]. Qingdao: Qingdao University of Science and Technology, 2014(in Chinese).
    [22]
    宋文进. 软模板法制备基于Cu2O的复合光催化剂及其性能研究[D]. 沈阳: 沈阳工业大学, 2022.

    SONG Wenjin. Preparation and properties of composite photocatalysts based on Cu2O by soft template method[D]. Shenyang: Shenyang University of Technology, 2022(in Chinese)
    [23]
    ZHANG H, WANG Y, GAO X, et al. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose[J]. Progress in Natural Science: Materials International,2017,27(3):311-315. doi: 10.1016/j.pnsc.2017.04.008
    [24]
    慕霞霞, 陈虎魁, 蒋红丽, 等. 模板法制备纳米金属氧化物材料现状及发展趋势[J]. 化工新型材料, 2020, 48:39-43. doi: 10.19817/j.cnki.issn1006-3536.2020.11.009

    MU Xiaxia, CHEN Hukui, JIANG Hongli, et al. Status and development of nanostructured metal oxide by templated synthesis[J]. New Chemical materials,2020,48:39-43(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.009
    [25]
    LI C, JIANG B, WANG Z, et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating[J]. Angewandte Chemie International Edition,2016,55(41):12746-12750. doi: 10.1002/anie.201606031
    [26]
    王然龙. 铜纳米线透明导电薄膜的制备及性能研究[D]. 重庆: 重庆理工大学, 2016.

    WANG Ranlong. Preparation and properties of copper nanowire transparent conductive films[D]. Chongqing: Chongqing University of Technology, 2016(in Chinese).
    [27]
    QIN B, MA H, HOSSAIN M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition[J]. Chemistry of Materials,2020,32(24):10321-10347. doi: 10.1021/acs.chemmater.0c03549
    [28]
    刘昆. 液相还原法制备铜纳米线及其在透明导电薄膜上的应用[D]. 深圳: 哈尔滨工业大学, 2018.

    LIU Kun. Synthesis of copper nanowires by liquid-phase reduction method and their application in transparent conductive films[D]. Shenzhen: Harbin Polytechnic Institute, 2018(in Chinese).
    [29]
    KIM C, GU W, BRICENO M, et al. Copper nanowires with a five-twinned structure grown by chemical vapor depo-sition[J]. Advanced Materials,2008,20(10):1859-1863. doi: 10.1002/adma.200701460
    [30]
    廖子健, 童周禹, 钟国麟, 等. 静电纺丝技术制备纳米纤维吸波材料的研究进展[J]. 化工新型材料, 2021, 49:11-15. doi: 10.19817/j.cnki.issn1006-3536.2021.11.003

    LIAO Zijian, TONG Zhouyu, ZHONG Guolin, et al. Research progress of nanofiber absorbing materials prepared by electrospinning[J]. New Chemical Materials,2021,49:11-15(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.003
    [31]
    SUN Q, SHI X, WANG X, et al. Ethanol vapor phase reduced electrospun CuO NWs networks as transparent electrodes in perovskite solar cells[J]. Organic Electronics,2019,75(C):105428.
    [32]
    翟艳玉. 电纺掩模制备CuNWs TE及其在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2021.

    ZHAI Yanyu. Preparation of CuNWs TE by electrospinning mask and its application in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese).
    [33]
    KIM S, LEE H, KIM D, et al. Transparent conductive films of copper nanofiber network fabricated by electrospinning[J]. Journal of Nanomaterials,2015,2015:518589.
    [34]
    WOO H, KIM S, YOON S, et al. Highly flexible and transparent film heater with electrospun copper conductive network via junction-free structure[J]. Journal of Alloys and Compounds,2021,886:161191. doi: 10.1016/j.jallcom.2021.161191
    [35]
    TSAI C Y, MULLINS M J, CHANG C S, et al. Highly conductive polypropylene nanocomposites containing copper nanowire[J]. Journal of Applied Polymer Science, 2023, 140(11): e53615
    [36]
    YU S, LIU Z, ZHAO L, et al. High-performance flexible transparent conductive tape based on copper nanowires[J]. Optical Materials,2021,119:111301.
    [37]
    CHANG Y, LYE M L, ZENG H C. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir,2005,21(9):3746-3748. doi: 10.1021/la050220w
    [38]
    RATHMELL A R, BERGIN S M, HUA Y L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films[J]. Advanced Materials, 2010, 22(32): 3558-3563.
    [39]
    MAJI N C, CHAKRABORTY J. Gram-scale green synthesis of copper nanowire powder for nanofluid applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12376-12388.
    [40]
    BAGCHI B, SALVADORES F C, BHATTI M, et al. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film[J]. Journal of Colloid and Interface Science,2022,608:30-39. doi: 10.1016/j.jcis.2021.09.130
    [41]
    JIN M, HE G, ZHANG H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J]. Angewandte Chemie International Edition,2011,50(45):10748-10752.
    [42]
    LUO M, ZHOU M, ROBSON R D S, et al. Pentatwinned Cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of Au-based nanotubes[J]. ChemNanoMat,2016,3(3):190-195.
    [43]
    SHI Y, LI H, CHEN L, et al. Obtaining ultra-long copper nanowires via a hydrothermal process[J]. Science and Technology of Advanced Materials,2005,6(7):761-765. doi: 10.1016/j.stam.2005.06.008
    [44]
    KUMAR D V, KIM I, ZHONG Z, et al. Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: Exploring the dual role of alkyl amines[J]. Physical Chemistry Chemical Physics,2014,16(40):22107-22115. doi: 10.1039/C4CP03880K
    [45]
    ZHANG T, HSIEH W Y, DANESHVAR F, et al. Copper(I)-alkylamine mediated synthesis of copper nanowires[J]. Nanoscale,2020,12(33):17437-17449. doi: 10.1039/D0NR04778C
    [46]
    JASON N N, SHEN W, CHENG W. Copper nanowires as conductive ink for low-cost draw-on electronics[J]. ACS Applied Materials & Interfaces,2015,7(30):16760-16766.
    [47]
    YE S, RATHMELL A R, STEWART I E, et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films[J]. Chemical Communications,2014,50(20):2562-2564. doi: 10.1039/C3CC48561G
    [48]
    LI Y, FAN Z, YUAN X, et al. Dodecylamine-mediated synthesis and growth mechanism of copper nanowires with an aspect ratio of over 10000[J]. Materials Letters,2020,274:128029. doi: 10.1016/j.matlet.2020.128029
    [49]
    LIN T, TAM S K, HU X, et al. A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films[J]. Journal of Nanoparticle Research,2021,23(5):121. doi: 10.1007/s11051-021-05239-9
    [50]
    JHON L, HUAMAN C, URUSHIZAKI I, et al. Large-scale Cu nanowire synthesis by PVP-ethylene glycol route[J]. Journal of Nanomaterials,2018,2018:1698357.
    [51]
    DESHMUKH R, CALVO M, SCHRECK M, et al. Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes[J]. ACS Applied Materials & Interfaces,2018,10(24):20748-20754.
    [52]
    OHIIENKO O, OH Y J. Preparation of narrow copper nanowires with less oxidized surface for flexible and transparent electrodes under octadecylamine[J]. Materials Chemistry and Physics,2020,246:122783. doi: 10.1016/j.matchemphys.2020.122783
    [53]
    QIAN F, LAN P C, OLSON T, et al. Multiphase separation of copper nanowires[J]. Chemical Communications,2016,52(78):11627-11630. doi: 10.1039/C6CC06228H
    [54]
    ZHAO S, HAN F, LI J, et al. Advancements in copper nanowires: Synthesis, purification, assemblies, surface modification, and applications[J]. Small,2018,14(26):1800047−1800076. doi: 10.1002/smll.201800047
    [55]
    KANG C, YANG S, TAN M, et al. Purification of copper nanowires to prepare flexible transparent conductive films with high performance[J]. ACS Applied Nano Materials,2018,1(7):3155-3163. doi: 10.1021/acsanm.8b00326
    [56]
    FU Q Q, LI Y D, LI H H, et al. In situ seed-mediated high-yield synthesis of copper nanowires on large scale[J]. Langmuir,2019,35(12):4364-4369. doi: 10.1021/acs.langmuir.9b00042
    [57]
    HAN S, HONG S, YEO J, et al. Nanorecycling: Monolithic integration of copper and copper oxide nanowire ntwork electrode through selective reversible photothermochemical reduction[J]. Advanced Materials,2015,27(41):6397-6403. doi: 10.1002/adma.201503244
    [58]
    ZENG X, PAN P, QI H, et al. Preparation of copper nanowires and thermal oxidation behaviour in dry oxygen[J]. Surface Innovations,2022,10(3):200-208. doi: 10.1680/jsuin.21.00033
    [59]
    DING S, JIU J, GAO Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J]. ACS Applied Materials & Interfaces,2016,8(9):6190-6199. doi: 10.1021/acsami.5b10802
    [60]
    NGUYEN-HUNG T, DUC-ANH N, THANH-HUNG D, et al. Fast and simple fabrication of flexible and transparent electrode based on patterned copper nanowires by mechanical lithography transfer[J]. Thin Solid Films, 2019, 285: 26-33.
    [61]
    LONNE Q, ENDRINO J, HUANG Z. UV treatment of flexible copper nanowire mesh films for transparent conductor applications[J]. Nanoscale Research Letters,2017,12(1):577. doi: 10.1186/s11671-017-2343-y
    [62]
    ZHANG H, WANG S, TIAN Y, et al. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes[J]. Nano Materials Science,2020,2(2):164-171. doi: 10.1016/j.nanoms.2019.09.007
    [63]
    TANG Y, RUAN H, HUANG Z, et al. Fabrication of high-quality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability[J]. Nanotechnology,2018,29(45):455706. doi: 10.1088/1361-6528/aade1e
    [64]
    KIM D, BANG J, WON P, et al. Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu-Au core-shell nanowire[J]. Advanced Materials Technologies,2020,5(12):2000661. doi: 10.1002/admt.202000661
    [65]
    YANG J, YU F, CHEN A, et al. Synthesis and application of silver and copper nanowires in high transparent solar cells[J]. Advanced Powder Materials,2022,1(4):100045. doi: 10.1016/j.apmate.2022.100045
    [66]
    LEE S, WERN C, YI S. Novel fabrication of silver-coated copper nanowires with organic compound solution[J]. Materials, 2022, 15(3): 1135.
    [67]
    ZHANG H, WANG S, TIAN Y H, et al. Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films[J]. Chemical Engineering Journal,2020,390:124495. doi: 10.1016/j.cej.2020.124495
    [68]
    YE D M, LI G Z, WANG G G, et al. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability[J]. Applied Surface Science,2019,467-468:158-167. doi: 10.1016/j.apsusc.2018.10.136
    [69]
    TONG X, HU H, ZHAO X, et al. In situ carbon coating for enhanced chemical stability of copper nanowires[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(3):557-562. doi: 10.1007/s12613-021-2343-x
    [70]
    CHU C R, LEE C, KOO J, et al. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability[J]. Nano Research,2016,9(7):2162-2173. doi: 10.1007/s12274-016-1105-y
    [71]
    LIU K, LI Y, ZHANG H, et al. Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability[J]. Applied Surface Science,2018,439:226-231. doi: 10.1016/j.apsusc.2018.01.020
    [72]
    YE S, STEWART I E, CHEN Z, et al. How copper nanowires grow and how to control their properties[J]. Accounts of Chemical Research,2016,49(3):442-451. doi: 10.1021/acs.accounts.5b00506
    [73]
    TOMOTOSHI D, OOGAMI R, KAWASAKI H. Highly conductive, flexible, and oxidation-resistant Cu-Ni electrodes produced from hybrid inks at low temperatures[J]. ACS Applied Materials & Interfaces,2021,13(17):20906-20915.
    [74]
    CHEN J Y, CHEN J, LI Y, et al. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters[J]. Nanoscale,2015,7(40):16874-16879. doi: 10.1039/C5NR04930J
    [75]
    KUSNIN N, YUSOF N A, MUTALIB N A A, et al. Enhanced electrochemical conductivity of surface-coated gold nanoparticles/copper nanowires onto screen-printed gold electrode[J]. Coatings,2022,12(5):622. doi: 10.3390/coatings12050622
    [76]
    NIU Z, CUI F, YU Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors[J]. Journal of the American Chemical Society,2017,139(21):7348-7354. doi: 10.1021/jacs.7b02884
    [77]
    CATENACCI M J, REYES C, CRUZ M A, et al. Stretchable conductive composites from Cu-Ag nanowire felt[J]. ACS Nano,2018,12(4):3689-3698. doi: 10.1021/acsnano.8b00887
    [78]
    NAVIK R, DING X, HUIJUN T, et al. Facile synthesis of highly oxidation stable nanosilver-coated copper nanowires for transparent flexible electrodes[J]. Industrial & Engineering Chemistry Research,2020,60(1):263-272.
    [79]
    AHN Y, JEONG Y, LEE D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes[J]. ACS Nano,2015,9(3):3125-3133. doi: 10.1021/acsnano.5b00053
    [80]
    ZHANG L, YANG R, CHEN K, et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters,2017,207:62-65. doi: 10.1016/j.matlet.2017.07.048
    [81]
    TUGBA C B, VAPAAVUORI J, BASARIR F. Transparent conductive electrode based on LBL deposition of graphene oxide and copper nanowires[J]. Materials Letters,2022,311:131632. doi: 10.1016/j.matlet.2021.131632
    [82]
    LIN Y T, HUANG D W, HUANG P F, et al. A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires[J]. Nanoscale Research Letters,2022,17(1):79. doi: 10.1186/s11671-022-03716-1
    [83]
    NAVIK R, XIAO D, GAI Y, et al. One-pot synthesis of copper nanowire-graphene composite with excellent stability and electrical performance for flexible electrodes[J]. Applied Surface Science,2020,527:146694. doi: 10.1016/j.apsusc.2020.146694
    [84]
    NAVIK R, DING X, HUIJUN T, et al. Fabrication of copper nanowire and hydroxylated graphene hybrid with high conductivity and excellent stability[J]. Applied Materials Today,2020,19:100619. doi: 10.1016/j.apmt.2020.100619
    [85]
    DANESHVAR F, TAGLIAFERRI S, CHEN H, et al. Ultralong electrospun copper-carbon nanotube composite fibers for transparent conductive electrodes with high operational stability[J]. ACS Applied Electronic Materials,2020,2(9):2692-2698. doi: 10.1021/acsaelm.0c00466
    [86]
    YAN K Y, XUE Q Z, XIA D, et al. The core/shell composite nanowires produced by self-scrolling carbon nanotubes onto copper nanowires[J]. ACS Nano,2009,3(8):2235-2240. doi: 10.1021/nn9005818
    [87]
    XIA X, CHAO D, QI X, et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties[J]. Nano Letters,2013,13(9):4562-4568. doi: 10.1021/nl402741j
    [88]
    LIU Y, LIU Z, LU N, et al. Facile synthesis of polypyrrole coated copper nanowires: A new concept to engineered core-shell structures[J]. Chemical Communications,2012,48(20):2621-2623. doi: 10.1039/c2cc16961d
    [89]
    YUAN H, WANG Y, LI T, et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire[J]. Composites Science and Technology,2018,164:153-159. doi: 10.1016/j.compscitech.2018.05.046
    [90]
    LI G Z, CAI Y W, WANG G G, et al. Performance enhancement of transparent and flexible triboelectric nanogenerator based on one-dimensionally hybridized copper/polydimethylsiloxane film[J]. Nano Energy,2022,99:107423. doi: 10.1016/j.nanoen.2022.107423
    [91]
    LIU W, WANG Y, DONG L, et al. Preparation of copper nanowires conductive films by using cuprous oxide nanowire as template[J]. IOP Conference Series: Earth and Environmental Science,2020,446(2):022027. doi: 10.1088/1755-1315/446/2/022027
    [92]
    XIANG Q, NAVIK R, TAN H, et al. Synthesis of oxidation-resistance copper nanowires-formate for high-performance transparent conductive electrodes[J]. Journal of Alloys and Compounds,2022,914:165265. doi: 10.1016/j.jallcom.2022.165265
    [93]
    GAO Z, CHUNKI Y, LIU Y, et al. Stretchable transparent conductive elastomer for skin-integrated[J]. Journal of Materials Chemistry C,2020,8(43):15105-15111. doi: 10.1039/D0TC02913K
    [94]
    KIM D, KWON J, JUNG J, et al. A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics[J]. Small Methods,2018,2(7):1800077. doi: 10.1002/smtd.201800077
    [95]
    JEONG G, KOO D, SEO J, et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer[J]. Nano Letters,2020,20(5):3718-3727. doi: 10.1021/acs.nanolett.0c00663
    [96]
    YU S, LI J, ZHAO L, et al. Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires[J]. Solar Energy Materials and Solar Cells,2021,231:111323. doi: 10.1016/j.solmat.2021.111323
    [97]
    WANG J, ZHANG Z, WANG S, et al. Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode[J]. Nano Energy,2020,71:104638. doi: 10.1016/j.nanoen.2020.104638
    [98]
    SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal,2020,395:125019.
    [99]
    HE F, LI K, CONG S, et al. Design and synthesis of N-doped carbon skeleton assembled by carbon nanotubes and graphene as a high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials,2021,4(8):7731-7742. doi: 10.1021/acsaem.1c01094
    [100]
    YAO M, JI X, OU X, et al. Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as battery-type electrodes for advanced flexible supercapacitors[J]. Journal of Power Sources,2022,543:231829. doi: 10.1016/j.jpowsour.2022.231829
    [101]
    SINGH S B, KSHETRI T, SINGH T I, et al. Embedded PEDOT:PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor[J]. Chemical Engineering Journal,2019,359:197-207. doi: 10.1016/j.cej.2018.11.160
    [102]
    ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2017,9(15):13213-13222.
    [103]
    LIU X, LI D, CHEN X, et al. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks[J]. ACS Applied Materials & Interfaces,2018,10(38):32536-32542.
    [104]
    LEE D, BANG G, BYUN M, et al. Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications[J]. Thin Solid Films,2020,697:137835. doi: 10.1016/j.tsf.2020.137835
    [105]
    LIN X, LIN J, ZENG C, et al. Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework-derived anode material for superior lithium storage[J]. Journal of Colloid and Interface Science, 2020, 565: 156-166.
    [106]
    ZHAO H X, LIU Y L, WANG G G, et al. Self-supported binder-free hybrid electrodes of Cu@CuO nanowires/carbon nanotubes for supercapacitors with ultrahigh areal-capacitance[J]. Energy Technology,2020,9(1):2000744.
    [107]
    SHANG H, ZUO Z, LI L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes[J]. Angewandte Chemie International Edition,2018,57(3):774-778. doi: 10.1002/anie.201711366
    [108]
    ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24. doi: 10.1016/j.jpowsour.2010.07.020
    [109]
    CHEN K T, CHANG W C, YANG H J, et al. Free standing Si (Ge) nanowire/Cu nanowire composites as lithium ion battery anodes[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,104:54-64. doi: 10.1016/j.jtice.2019.07.014
    [110]
    ZHANG L F, ZHANG L C, XIE Z, et al. Cu&Si core-shell nanowire thin film as high-performance anode materials for lithium ion batteries[J]. Applied Sciences,2021,11(10):4521. doi: 10.3390/app11104521
    [111]
    TIGAN D, GENLIK S P, IMER B, et al. Core/shell copper nanowire networks for transparent thin film heaters[J]. Nanotechnology,2019,30(32):325202. doi: 10.1088/1361-6528/ab19c6
    [112]
    XU X, WANG R, NIE P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2017,9(16):14273-14280.
    [113]
    ZHU Y, HARTEL M C, YU N, et al. Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks[J]. Small Methods,2022,6(1):2100900. doi: 10.1002/smtd.202100900
    [114]
    SONG Z, LIU Z, ZHAO L, et al. Biodegradable and flexible capacitive pressure sensor for electronic skins[J]. Orga-nic Electronics,2022,106:106539. doi: 10.1016/j.orgel.2022.106539
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1559) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return