Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WANG Yanfei, JIN Zeyuan, LI Zhuolin, et al. Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 180-191. doi: 10.13801/j.cnki.fhclxb.20220117.004
Citation: WANG Yanfei, JIN Zeyuan, LI Zhuolin, et al. Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 180-191. doi: 10.13801/j.cnki.fhclxb.20220117.004

Preparation and adsorption-photocatalytic properties of Cu2O-PVA/nanocellulose composite

doi: 10.13801/j.cnki.fhclxb.20220117.004
Funds:  National Natural Science Fundation of China (32171692); Fundamental Research Funds for the Central Universities (2572020DR13); College Students' Innovative Entrepreneurial Training Plan Program of Northeast Forestry University (CL06)
  • Received Date: 2021-11-11
  • Accepted Date: 2022-01-07
  • Rev Recd Date: 2022-01-05
  • Available Online: 2022-01-18
  • Publish Date: 2023-01-15
  • In order to improve the photocatalytic performance of cuprous oxide (Cu2O), Cu2O particles and polyvinyl alcohol (PVA) were added to nanocellulose (CNF) at the same time, and a functionalized cellulose-based aerogel (Cu2O-PVA/CNF) with three-dimensional (3D) porous structure and abundant active sites were successfully prepared by the exsitu method. The aerogel samples were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffractometer, automatic specific surface area, and compression test. Taking the degradation of methylene blue (MB) as a model pollutant, the photocatalytic performance of 6wt%Cu2O-PVA/CNF composite catalyst was evaluated, the effects of different initial concentrations, catalyst dosages and solution pH conditions on the photodegradation of MB were investigated. The results show that the use of the three-dimensional porous cellulose aerogel improves the adsorption capacity of MB and prolongs the absorption of visible light. In particular, Cu2O doped in the cellulose matrix excites electron-holes under light, which increases the active sites, thereby improving the catalytic ability. The photodegradation rate of 6wt%Cu2O-PVA/CNF composite catalyst to MB reaches 95.6%, which is much higher than 79.6% of pure Cu2O. The photodegradation process of Cu2O-PVA/CNF composite catalyst follows the apparent quasi-first order dynamics model. In addition, compared with pure CNF aerogel, the addition of PVA increases its compressive strength by 4.4 times. The catalyst is reused after 5 photocatalytic cycles, and the visible light catalytic degradation rate of MB can still reach 71.06%. The Cu2O-PVA/CNF composite material is beneficial to the treatment of dye wastewater by solar radiation.

     

  • loading
  • [1]
    ZULFIQAR M, SUFIAN S, BAHADAR A, et al. Surface-fluorination of TiO2 photocatalysts for remediation of water pollution: A review[J]. Journal of Cleaner Production,2021,317:128354. doi: 10.1016/j.jclepro.2021.128354
    [2]
    ZHANG H, FANG Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures[J]. Journal of Alloys and Compounds,2019,781:201-208. doi: 10.1016/j.jallcom.2018.11.375
    [3]
    李佳欣, 高铭, 谭淋, 等. 静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展[J]. 复合材料学报, 2022, 39(4): 1378-1394.

    LI Jiaxin, GAO Ming, TAN Lin, et al. Adsorption treatment of wastewater by electrospun nanofiber membranes: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1378-1394(in Chinese).
    [4]
    YAGUB M T, SEN T K, AFROZE S, et al. Dye and its removal from aqueous solution by adsorption: A review[J]. Advances in Colloid and Interface Science,2014,209:172-184. doi: 10.1016/j.cis.2014.04.002
    [5]
    SELINA H, MAJID E, KOLBRUN F H, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review[J]. Science of the Total Environment,2020,710:136375. doi: 10.1016/j.scitotenv.2019.136375
    [6]
    申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation of CuS-Bi2WO6/activated carbon nanofiber and its photocatalytic performance[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [7]
    THORBEN M, DENNIS H, MICHAEL S, et al. Electrochemical reactors for wastewater treatment[J]. ChemBioEng Reviews,2019,6(5):142-156. doi: 10.1002/cben.201900021
    [8]
    CHEE Y T, PRETTY M B, KATRINA P, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. ACS Publications,2016,55(16):4363-4389.
    [9]
    李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12):4273-4281.

    LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica,2021,38(12):4273-4281(in Chinese).
    [10]
    PAOLA F, STEFANO C, ANTONIO T, et al. Porous aerogels and adsorption of pollutants from water and air: A review[J]. Molecules,2021,26(15):4440. doi: 10.3390/molecules26154440
    [11]
    HAJAR M. Recent advances in aerogels for environmental remediation applications: A review[J]. Chemical Engineering Journal,2016,300:98-118. doi: 10.1016/j.cej.2016.04.098
    [12]
    林兆云, 戢德贤, 杨桂花, 等. 纤维素基金属纳米粒子复合催化剂的制备与应用[J]. 复合材料学报, 2022, 39(3):989-1000.

    LIN Zhaoyun, JI Dexian, YANG Guihua, et al. Preparation and application of cellulose-based metal nanoparticles composite catalysts[J]. Acta Materiae Compositae Sinica,2022,39(3):989-1000(in Chinese).
    [13]
    邹静, 王正良, 佘跃惠. 生物纳米复合材料的合成及其在污水处理中的应用[J]. 复合材料学报, 2022, 39(4): 1534-1546.

    ZOU Jing, WANG Zhengliang, SHE Yuehui. Synthesis of bio-nano composite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1534-1546(in Chinese).
    [14]
    AZIMA A, KAM S L, SIEW X C, et al. Zinc oxide-filled polyvinyl alcohol-cellulose nanofibril aerogel nanocomposites for catalytic decomposition of an organic dye in aqueous solution[J]. Cellulose,2021,28:2241-2253. doi: 10.1007/s10570-021-03695-z
    [15]
    SHEN D Z, LIU J, GAN L H, et al. Green synthesis of Fe3O4/cellulose/polyvinyl alcohol hybride aerogel and its application for dye removal[J]. Journal of Polymers and the Environment,2018,26:2234-2242. doi: 10.1007/s10924-017-1116-0
    [16]
    吴树颖, 冯郁成, 张霄, 等. 氧化亚铜-纤维素复合材料的制备与应用进展[J]. 中国造纸, 2021, 40(9):81-92.

    WU Shuying, FENG Yucheng, ZHANG Xiao, et al. Progress in the preparation and application of cuprous oxide-cellulose composites[J]. China Pulp & Paper,2021,40(9):81-92(in Chinese).
    [17]
    李卓豪, 陈秀婷, 李俊航, 等. Cu2O掺杂TiO2光催化降解亚甲基蓝的研究[J]. 应用化工, 2020, 49(12):3039-3042. doi: 10.3969/j.issn.1671-3206.2020.12.018

    LI Zhuohao, CHEN Xiuting, LI Junhang, et al. Study on photocatalytic degradation of methylene blue by Cu2O doped TiO2[J]. Applied Chemical Industry,2020,49(12):3039-3042(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.12.018
    [18]
    龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6):2756-2767.

    LONG Dan, ZHOU Junling, SHI Hongmin, et al. Advances in research on performance enhancement and enhancement mechanism of cuprous oxide photocatalyst[J]. Chemical Industry and Engineering Progress,2019,38(6):2756-2767(in Chinese).
    [19]
    SUBHEDAR A, BHADAURIA S, AHANKARI S, et al. Nanocellulose in biomedical and biosensing applications: A review[J]. International Journal of Biological Macromolecules,2021,166:587-600. doi: 10.1016/j.ijbiomac.2020.10.217
    [20]
    NELE V, WOJCIECHOWSKI J P, ARMSTRONG J P K, et al. Tailoring gelation mechanisms for advanced hydrogel applications[J]. Advanced Functional Materials, 2020, 30(42): 2002759.
    [21]
    RASHMI S H, RAIZADA A, MADHU G M, et al. Influence of zinc oxide nanoparticles on structural and electrical properties of polyvinyl alcohol films[J]. Plastics, Rubber and Composites,2015,44(1):33-39. doi: 10.1179/1743289814Y.0000000115
    [22]
    SELVI J, MAHALAKSHMI S, PARTHASARATHY V, et al. Optical, thermal, mechanical properties, and non-isothermal degradation kinetic studies on PVA/CuO nanocomposites[J]. Polymer Composites,2019,40(9):3737-3748. doi: 10.1002/pc.25235
    [23]
    FAN J J, SHINDUKE I, WANG M Z, et al. Robust nanofibrillated cellulose hydro/aerogels from benign solution/solvent exchange treatment[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):6624-6634.
    [24]
    TSUGUYUKI S, SATOSHI K, YOSHIHARU N, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. doi: 10.1021/bm0703970
    [25]
    YANG H M, OUYANG J, TANG A D, et al. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles[J]. Materials Research Bulletin,2006,41(7):1310-1318. doi: 10.1016/j.materresbull.2006.01.004
    [26]
    WU J, CARSON M J. Assembly of chitin nanofibers into porous biomimetic structures via freeze drying[J]. ACS Macro Letters,2014,3(2):185-190. doi: 10.1021/mz400543f
    [27]
    SATHISH M B, KELOTH B. Fabrication of multifunctional TANI/Cu2O/Ag nanocomposite for environmental abatement[J]. Scientific Reports,2020,10:1-16. doi: 10.1038/s41598-019-56847-4
    [28]
    CHAN C H, CHIN H C, SARANI Z, et al. Cellulose nanofibrils: A rapid adsorbent for the removal of methylene blue[J]. RSC Advances,2015,5(24):18204-18212. doi: 10.1039/C4RA15754K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (1210) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return