Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
GUO Shun, XU Junqiang, YANG Dongqing, et al. Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001
Citation: GUO Shun, XU Junqiang, YANG Dongqing, et al. Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6017-6027. doi: 10.13801/j.cnki.fhclxb.20220711.001

Microstructure and mechanical properties of heterogeneous layered titanium alloy components fabricated via additive manufacturing

doi: 10.13801/j.cnki.fhclxb.20220711.001
  • Received Date: 2022-05-09
  • Accepted Date: 2022-06-29
  • Rev Recd Date: 2022-06-24
  • Available Online: 2022-07-11
  • Publish Date: 2022-12-01
  • The additive manufacturing of heterogeneous layered titanium alloy is realized by the alternating deposition of TC4 and TA2 using a double wire plasma system. The components have good deposition morphology and mechanical properties. OM, SEM, backscattered electron diffraction technique (EBSD), XRD etc. were used to analyze the microstructure, mechanical properties were tested with microhardness and compression properties. The results show that TA2 and TC4 regions are mainly composed of lamellae α phase and α+β phase of basketweave and colonies structure. The grains in each region grow in the opposite direction of heat flow. The grain boundary characteristics and crystal orientation of TC4 region and TA2 region have similar laws, but due to the differences of phase growth of heterogeneous materials, the growth direction of β phase has changed between different layers, and the original β phase growth direction of TC4 region will grow along a preferred orientation of the deposited TA2 region, which limits the phenomenon of continuous growth of β phase into coarsened columnar crystal. In the layered structure, the hardness of TC4 region is significantly higher than that of TA2 region, and the hardness increases along the deposited direction. The component has close compressive strength along different directions, nearly 2.0 GPa, but the special layered structure formed alternately by TC4 and TA2 has high fracture strain (0.33) along the deposited direction and high yield strength (1133 MPa) along the travel direction.

     

  • loading
  • [1]
    ZHENG J, CHEN S, JIANG L, et al. Effect of carbon content on the microstructure and mechanical properties of NiCrFe-7 A alloys synthesized by wire arc additive manufacturing[J]. Materials Science and Engineering: A,2022,842:142925. doi: 10.1016/j.msea.2022.142925
    [2]
    NG C H, BERMINGHAM M J, YUAN L, et al. Towards β-fleck defect free additively manufactured titanium alloys by promoting the columnar to equiaxed transition and grain refinement[J]. Acta Materialia,2022,224:117511. doi: 10.1016/j.actamat.2021.117511
    [3]
    CHAO Q, MATETI S, ANNASAMY M, et al. Nanoparticle-mediated ultra grain refinement and reinforcement in additively manufactured titanium alloys[J]. Additive Manufacturing,2021,46:102173. doi: 10.1016/j.addma.2021.102173
    [4]
    WANG C, SUDER W, DING J, et al. Wire based plasma arc and laser hybrid additive manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2021,293:117080. doi: 10.1016/j.jmatprotec.2021.117080
    [5]
    WANG L, ZHANG Y, HUA X, et al. Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: microstructure evolution and mechanical properties[J]. Materials Science and Engineering: A,2021,812:141056. doi: 10.1016/j.msea.2021.141056
    [6]
    WANG K, LIU Y, SUN Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. Journal of Alloys and Compounds,2020,819:152936. doi: 10.1016/j.jallcom.2019.152936
    [7]
    LIN J, LV Y, LIU Y, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29. doi: 10.1016/j.jmbbm.2016.12.015
    [8]
    MOGHIMIAN P, POIRIE T, HABIBNEJAD-KORAYEM M, et al. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys[J]. Additive Manufacturing,2021,43:102017. doi: 10.1016/j.addma.2021.102017
    [9]
    李长富, 郑鉴深, 周思雨, 等. CMT电弧增材制造TC4钛合金的显微组织与力学性能[J]. 中国有色金属学报, 2022, 32(9): 2609-2619.

    LI Changfu, ZHENG Jianshen, ZHOU Siyu, et al. Microstructure and mechanical properties analysis of CMT wire arc additive manufactured Ti-6Al-4V titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 2609-2619(in Chinese).
    [10]
    魏志祥, 李国选, 汪月勇, 等. TIG电弧增材制造TC4钛合金的组织与性能[J]. 有色金属工程, 2021, 11(10):14-19. doi: 10.3969/j.issn.2095-1744.2021.10.003

    WEI Zhixiang, LI Guoxuan, WANG Yueyong, et al. Microstructure and properties of TC4 titanium alloy produced by TIG arc additive manufacturing[J]. Nonferrous Metal Engineering,2021,11(10):14-19(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.10.003
    [11]
    GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [12]
    邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):2398-2406. doi: 10.13801/j.cnki.fhclxb.20190301.001

    SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii[J]. Acta Materiae Compositae Sinica,2019,36(10):2398-2406(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190301.001
    [13]
    徐俊强, 彭勇, 周琦, 等. 异种钛合金协同送丝等离子增材制造试验[J]. 焊接学报, 2019, 40(9):59-64, 163-164.

    XU Junqiang, PENG Yong, ZHOU Qi, et al. Study on plasma wire and arc additive manufacturing process of titanium alloys with twin-wire feeding[J]. Transactions of the China Welding Institution,2019,40(9):59-64, 163-164(in Chinese).
    [14]
    XU J, ZHU J, FAN J, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication[J]. Vacuum,2019,167:364-373. doi: 10.1016/j.vacuum.2019.06.030
    [15]
    LIM S C V, YANG K V, YANG Y, et al. Tracking microstructure, texture and boundary misorientation evolution of hot deformed and post-deformation annealed Ti-6Al-4V alloy[J]. Materials Science and Engineering: A,2016,651:524-534. doi: 10.1016/j.msea.2015.09.060
    [16]
    BELADI H, CHAO Q, ROHRER G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy[J]. Acta Materialia,2014,80:478-489. doi: 10.1016/j.actamat.2014.06.064
    [17]
    BAYKASOGLU C, AKYILDIZ O, TUNAY M, et al. A process-microstructure finite element simulation framework for predicting phase transformations and microhardness for directed energy deposition of Ti-6Al-4V[J]. Additive Manufacturing,2020,35:101252. doi: 10.1016/j.addma.2020.101252
    [18]
    李雷, 于治水, 张培磊, 等. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12):37-43. doi: 10.12073/j.hjxb.2018390294

    LI Lei, YU Zhishui, ZHANG Peilei, et al. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. Transactions of the China Welding Institution,2018,39(12):37-43(in Chinese). doi: 10.12073/j.hjxb.2018390294
    [19]
    AYYAR H, EHTEMAM-HAGHIGHI S, KENT D, et al. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes[J]. Materials Science and Engineering: A,2017,705:385-393. doi: 10.1016/j.msea.2017.08.103
    [20]
    LONG F W, JIAGN Q W, XIAO L, et al. Compressive defor-mation behaviors of coarse-and ultrafine-grained pure titanium at different temperatures: A comparative study[J]. Materials Transactions,2011,52(8):1617-1622. doi: 10.2320/matertrans.M2011041
    [21]
    LI X P, VAN H J, KRUTH J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Materials & Design,2017,116:352-358.
    [22]
    BANDYOPADHYAY A, DITTRICK S, GUALTIERI T, et al. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,57:280-288. doi: 10.1016/j.jmbbm.2015.11.022
    [23]
    LONG Y, ZHANG H, WANG T, et al. High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering[J]. Materials Science and Engineering: A,2013,585:408-414. doi: 10.1016/j.msea.2013.07.078
    [24]
    SUI Q, LI P, WANG K, et al. Effect of build orientation on the corrosion behavior and mechanical properties of selective laser melted Ti-6Al-4V[J]. Metals,2019,9(9):976. doi: 10.3390/met9090976
    [25]
    ABBASZADEH M, VENTZKE V, NETO L, et al. Compression behaviour of wire + arc additive manufactured structures[J]. Metals,2021,11(6):877. doi: 10.3390/met11060877
    [26]
    齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3):1055-1067.

    QI Tianyu, YANG Jianjun, ZHAO Jiawei, et al. Integrated manufacturing and performance study of continuous functionally graded materials structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica,2022,39(3):1055-1067(in Chinese).
    [27]
    常海, 徐超, 胡小石. 累积叠轧纯Mg/ZK60镁合金层状金属复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1):178-185. doi: 10.13801/j.cnki.fhclxb.20180606.001

    CHANG Hai, XU Chao, HU Xiaoshi. Microstructure evolution and mechanical properties of Mg/ZK60 laminated composite fabricated by accumulated roll-bonding[J]. Acta Materiae Compositae Sinica,2019,36(1):178-185(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180606.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1116) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return