Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005
Citation: WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12. doi: 10.13801/j.cnki.fhclxb.20220512.005

Research status and development trend of electromagnetic absorbing materials

doi: 10.13801/j.cnki.fhclxb.20220512.005
Funds:  National Science Foundation of Liaoning Province (1645749635925); Open Project Program of Ministry of Education Key Laboratory for Advanced Textile Composite Materials (Tiangong University)(MATC-2021-003)
  • Received Date: 2022-03-01
  • Accepted Date: 2022-05-03
  • Rev Recd Date: 2022-04-15
  • Available Online: 2022-05-12
  • Publish Date: 2023-01-15
  • With the wide application of electronic equipment in military, communication, medical, transportation and other fields, the problems of electromagnetic interference and electromagnetic radiation are increasing. Wave absorbing materials can convert the electromagnetic wave energy into heat or other forms energy, which is a direct and effective means of electromagnetic pollution prevention and control. Therefore, researchers at home and abroad have invested a lot of research on the development and application of high-performance wave absorbing materials. Based on the current research status at home and abroad, the paper briefly summarizes the absorption theory and the classification of wave absorbing material. In addition, the paper focusses on the enhancement of electromagnetic adsorption performance from the structural design of materials. Finally, this paper prospects the development trend of wave absorption materials from the direction of compatibility, composite, intelligence and eco-friendly. The paper aims to provide research ideas and theoretical basis for the development of new and high-performance wave absorbing materials.

     

  • loading
  • [1]
    纳木尔赛罕. C@SiC核壳材料的制备及吸波性能[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    NA Muersaihan. Preparation of C@SiC core-shell materials and its absorbing properties[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [2]
    ZHOU W, ZHU Z, BAI R. Low-frequency broadband lightweight magnetic composite absorber based on metamaterial structure[J]. Optik,2021,244:167619. doi: 10.1016/j.ijleo.2021.167619
    [3]
    王士鹏. 一维核壳结构四氧化三铁基复合材料的制备及其吸波性能研究[D]. 淮北: 淮北师范大学, 2020.

    WANG Shipeng. Preparation and absorption properties of one-dimensional core-shell Fe3O4 based composites[D]. Huaibei: Huaibei Normal University, 2020(in Chinese).
    [4]
    赵彦婷. 高磁导率石墨基磁性吸波材料的可控制备与电磁性能研究[D]. 金华: 浙江师范大学, 2018.

    ZHAO Yanting. Controllable fabrication and electromagnetic properties of graphite-based magnetic absorbing materials with high permeability[D]. Jinhua: Zhejiang Normal University, 2018(in Chinese).
    [5]
    GU Q, JAFARIAN M, AFGHAHI S S S, et al. Tuning the impedance matching characteristics of microwave absorbing paint in X-band using copper particles and polypyrrole coating[J]. Materials Research Bulletin,2020,125:110780. doi: 10.1016/j.materresbull.2020.110780
    [6]
    SHI Y, YU L, LI K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology,2020,197:108246. doi: 10.1016/j.compscitech.2020.108246
    [7]
    罗道源. BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究[D]. 长沙: 中南大学, 2012.

    LUO Daoyuan. The research on preparation and microwave properties of BaFe12O19, BaTiO3 and their composite systems[D]. Changsha: Central South University, 2012(in Chinese).
    [8]
    张珍. 中空碳纳米球复合Fe3O4和Co的电磁波吸收性能研究[D]. 秦皇岛: 燕山大学, 2019.

    ZHANG Zhen. The research on electromagnetic wave absorption performances of hollow carbon nanospheres composites with Fe3O4 and Co[D]. Qinhuangdao: Yanshan University, 2019(in Chinese).
    [9]
    PANG H, DUAN Y, HUANG L, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering,2021,224:109173. doi: 10.1016/j.compositesb.2021.109173
    [10]
    LI J S, HUANG H, ZHOU Y J, et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research,2017,32(7):1213-1230. doi: 10.1557/jmr.2017.80
    [11]
    INDRUSIAK T, PEREIRA I M, PONTES K, et al. Hybrid carbonaceous materials for radar absorbing poly(vinylidene fluoride) composites with multilayered structures[J]. SPE Polymers,2021,2(1):62-73. doi: 10.1002/pls2.10030
    [12]
    SISTA K S, DWARAPUDI S, KUMAR D, et al. Carbonyl iron powders as absorption material for microwave interference shielding: A review[J]. Journal of Alloys and Compounds,2021,853:157251. doi: 10.1016/j.jallcom.2020.157251
    [13]
    LEI L, YAO Z, ZHOU J, et al. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance[J]. Composites Science and Technology,2020,200:108479. doi: 10.1016/j.compscitech.2020.108479
    [14]
    WANG J, REN J, LI Q, et al. Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface[J]. Carbon,2021,184:195-206. doi: 10.1016/j.carbon.2021.08.021
    [15]
    ZHAO X, NIE X, LI Y, et al. A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material[J]. Journal of Materials Chemistry C,2019,7(39):12270-12277. doi: 10.1039/C9TC03254A
    [16]
    SANTHOSI B, RAMJI K, RAO N B R M. Design and development of polymeric nanocomposite reinforced with graphene for effective EMI shielding in X-band[J]. Physica B: Physics of Condensed Matter,2020,586:412144. doi: 10.1016/j.physb.2020.412144
    [17]
    YAN J, HUANG Y, WEI C, et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites Part A: Applied Science and Manufacturing,2017,99:121-128. doi: 10.1016/j.compositesa.2017.04.016
    [18]
    JIANG S, QIAN K, YU K, et al. Controllable synthesis and microwave absorption properties of Fe3O4@f-GNPs nanocomposites[J]. Composites Communications,2020,20:100363. doi: 10.1016/j.coco.2020.100363
    [19]
    LI L, CHEN K, LIU H, et al. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite[J]. Journal of Alloys and Compounds,2013,557:11-17. doi: 10.1016/j.jallcom.2012.12.148
    [20]
    BI S, TANG J, WANG D J, et al. Lightweight non-woven fabric graphene aerogel composite matrices for assembling carbonyl iron as flexible microwave absorbing textiles[J]. Journal of Materials Science: Materials in Electronics,2019,30(18):17137-17144. doi: 10.1007/s10854-019-02060-y
    [21]
    JIANG S, QIAN K, YU K, et al. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption[J]. Chemical Physics Letters,2021,779:138873. doi: 10.1016/j.cplett.2021.138873
    [22]
    QIAO Z, PAN S, XIONG J, et al. Magnetic and microwave absorption properties of La-Nd-Fe alloys[J]. Journal of Magnetism and Magnetic Materials,2017,423:197-202. doi: 10.1016/j.jmmm.2016.08.093
    [23]
    DING J, CHEN F, CHEN J, et al. MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance[J]. Journal of the American Ceramic Society,2021,104(4):1772-1784. doi: 10.1111/jace.17596
    [24]
    CHEN C, ZENG S, HAN X, et al. 3D carbon network supported porous SiOC ceramics with enhanced microwave absorption properties[J]. Journal of Materials Science & Technology,2020,54:223-229.
    [25]
    ZHANG H, LIU H, WU H, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society,2022,42(4):1249-1257. doi: 10.1016/j.jeurceramsoc.2021.12.011
    [26]
    SUN Z G, WANG S J, QIAO X J, et al. Synthesis and microwave absorbing properties of SiC nanowires[J]. Applied Physics A,2018,124(12):1-8.
    [27]
    DU B, QIAN J, HU P, et al. Fabrication of C-doped SiC nanocomposites with tailoring dielectric properties for the enhanced electromagnetic wave absorption[J]. Carbon,2020,157:788-795. doi: 10.1016/j.carbon.2019.10.029
    [28]
    SUN T, LIU Z, LI S, et al. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method[J]. Composites Part A: Applied Science and Manufacturing,2021,150:106594. doi: 10.1016/j.compositesa.2021.106594
    [29]
    孔德明, 胡慧芳, 冯建辉, 等. 掺杂聚苯胺吸波材料的研究[J]. 高分子材料科学与工程, 2000, 16(3):169-171. doi: 10.3321/j.issn:1000-7555.2000.03.050

    KONG Deming, HU Huifang, FENG Jianhui, et al. Studies on microwave absorption properties of doped polyaniline[J]. Polymer Materials Science and Engineering,2000,16(3):169-171(in Chinese). doi: 10.3321/j.issn:1000-7555.2000.03.050
    [30]
    赵静, 林艺, 徐荣臻, 等. 手性吸波材料研究进展[J]. 功能材料, 2013, 44(S1):1-4.

    ZHAO Jing, LIN Yi, XU Rongzhen, et al. Research in chiral absorbing materials[J]. Journal of Functional Materials,2013,44(S1):1-4(in Chinese).
    [31]
    李琳. 二茂铁基手性聚Schiff碱的合成与表征及吸波性能研究[D]. 南昌: 南昌航空大学, 2016.

    LI Lin. Synthesis, characterization and electromagnetic wave absorbing properties of ferrocenely-chiral schiff base polymers[D]. Nanchang: Nanchang Hangkong University, 2016(in Chinese).
    [32]
    REN H, LI T, WANG H, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection[J]. Chemical Engineering Journal,2022,427:131582. doi: 10.1016/j.cej.2021.131582
    [33]
    李泽斌, 王海露, 袁承勋, 等. 等离子体复合雷达吸波材料的电磁特性[J]. 电波科学学报, 2018, 33(6):695-700.

    LI Zebin, WANG Hailu, YUAN Chengxun, et al. Electromagnetic characteristics of plasma combining radar absorbing materials[J]. Chinese Journal of Radio Science,2018,33(6):695-700(in Chinese).
    [34]
    GAO Z, FAN Q, XU C, et al. Compatible stealth design of infrared and radar based on plasmonic absorption structure[J]. Optics Express,2021,29(18):28767-28777. doi: 10.1364/OE.432703
    [35]
    SHAO T, MA H, WANG J, et al. Ultra-thin and high temperature NiCrAlY alloy metamaterial enhanced radar absorbing coating[J]. Journal of Alloys and Compounds,2020,832:154945. doi: 10.1016/j.jallcom.2020.154945
    [36]
    PEYMANFAR R, FAZLALIZADEH F. Microwave absorption performance of ZnAl2O4[J]. Chemical Engineering Journal,2020,402:126089. doi: 10.1016/j.cej.2020.126089
    [37]
    LIANG H, XING H, QIN M, et al. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105959. doi: 10.1016/j.compositesa.2020.105959
    [38]
    张泽奎, 张晗, 赵亚娟, 等. 一种单层宽频吸波超材料设计及其性能分析[J]. 电子世界, 2019(9):34-35, 38.

    ZHANG Zekui, ZHANG Han, ZHAO Yajuan, et al. Design and performance analysis of a single layer broadband absorbing metamaterial[J]. Electronics World,2019(9):34-35, 38(in Chinese).
    [39]
    LEE Y, WEE F, YOU K, et al. Study of single layer microwave absorber based on rice husk Ash/CNTs composites[J]. Indonesian Journal of Electrical Engineering Computer Science,2019,14:929-936. doi: 10.11591/ijeecs.v14.i2.pp929-936
    [40]
    ZHAN R, ZHANG J, GAO Q, et al. Microwave absorption performance of single-layer and multi-layer structures prepared by CNTs/Fe3O4 nonwoven materials[J]. Crystals,2021,11(8):1000. doi: 10.3390/cryst11081000
    [41]
    马觅洋, 张西军, 曾一兵. 多层结构设计在吸波材料中的应用[J]. 宇航材料工艺, 2017, 47(4): 8-13.

    MA Miyang, ZHANG Xijun, ZENG Yibing. Application of multilayer structure design in absorbing materials[J]. Aerospace Materials and Technology, 2017, 47(4): 8-13(in Chinese).
    [42]
    DONG S, HU P, LI X, et al. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption[J]. Chemical Engineering Journal,2020,398:125588. doi: 10.1016/j.cej.2020.125588
    [43]
    LI W, XU L, ZHANG X, et al. Investigating the effect of honeycomb structure composite on microwave absorption properties[J]. Composites Communications,2020,19:182-188. doi: 10.1016/j.coco.2020.04.003
    [44]
    LI W, LIU Y, GUO F, et al. Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance[J]. Applied Surface Science,2021,562:150212. doi: 10.1016/j.apsusc.2021.150212
    [45]
    GORAI A, MANDAL D, MANDAL K. Multi-layered nano-hollow spheres for efficient electromagnetic wave absorption[J]. Nanotechnology,2021,32(34):345707. doi: 10.1088/1361-6528/ac020e
    [46]
    JIN D H, JANG M S, CHOI J H, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity[J]. Composite Structures,2021,273:114279. doi: 10.1016/j.compstruct.2021.114279
    [47]
    SIMRUNI M, JAM S. Design of high gain, wideband microstrip resonant cavity antenna using FSS superstrate with equivalent circuit model[J]. AEUE-International Journal of Electronics and Communications,2019,112:152935. doi: 10.1016/j.aeue.2019.152935
    [48]
    KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741. doi: 10.1038/127741a0
    [49]
    HU C, MOU Z, LU G, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics,2013,15(31):13038-13043. doi: 10.1039/c3cp51253c
    [50]
    LIANG C, WANG Z. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties[J]. Chemical Engineering Journal,2019,373:598-605. doi: 10.1016/j.cej.2019.05.076
    [51]
    BAI Y H, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building Materials,2022,330:127221. doi: 10.1016/j.conbuildmat.2022.127221
    [52]
    LI W, LI C, LIN L, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds,2019,781:883-891. doi: 10.1016/j.jallcom.2018.12.010
    [53]
    WANG S, HUANG X, ZHANG W. Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties[J]. Applied Physics A,2021,127(10):742. doi: 10.1007/s00339-021-04894-y
    [54]
    戚佳一, 丁伟. 中空磁性金属微纳米材料的特性及应用研究进展[J]. 化学教育, 2021, 42(20):1-9.

    QI Jiayi, DING Wei. Research progress in characteristics and applications of hollow magnetic metal micro/nano materials[J]. Chinese Journal of Chemical Education,2021,42(20):1-9(in Chinese).
    [55]
    WANG Z, ZHAO L, WANG P, et al. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning[J]. Journal of Alloys and Compounds,2016,687:541-547. doi: 10.1016/j.jallcom.2016.06.118
    [56]
    LI S, LIN L, YAO L, et al. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,856:158183. doi: 10.1016/j.jallcom.2020.158183
    [57]
    XIAO T, KUANG J, PU H, et al. Hollow SiC microtube with multiple attenuation mechanisms for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,862:158032. doi: 10.1016/j.jallcom.2020.158032
    [58]
    黄婷. 多级孔吸波材料的制备及性能研究[D]. 厦门: 厦门大学, 2019.

    HUANG Ting. Preparation and properties of hierarchically porous microwave absorbing materials[D]. Xiamen: Xiamen University, 2019(in Chinese).
    [59]
    XU R, XU D, ZENG Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal,2022,427:130796. doi: 10.1016/j.cej.2021.130796
    [60]
    CHEN W, ZHAO H, XU B, et al. Rational construction and microwave absorption properties of porous FeOx/Fe/C composites[J]. Journal of Alloys and Compounds,2020,829:154519. doi: 10.1016/j.jallcom.2020.154519
    [61]
    WEI S, SHI Z, WEI W, et al. Facile preparation of ultralight porous carbon hollow nanoboxes for electromagnetic wave absorption[J]. Ceramics International,2021,47(19):28014-28020. doi: 10.1016/j.ceramint.2021.06.132
    [62]
    SHI K, LI J, WU Y, et al. Lightweight composite microwave absorbing materials based on graphene aerogels with honeycomb structure[J]. Physica Status Solidi (RRL)–Rapid Research Letters,2019,13(8):1900179. doi: 10.1002/pssr.201900179
    [63]
    百晓宇. 类蜂窝状碳/钴复合材料的制备及吸波性能研究[D]. 西安: 陕西科技大学, 2020.

    BAI Xiaoyu. Preparation and electromagnetic wave absorption properties of honeycomb-like C/Co composites[D]. Xi’an: Shaanxi University of Science and Technology, 2020(in Chinese).
    [64]
    邓云飞, 张海燕, 韩聪爱, 等. 三维蜂窝状碳包纳米铁颗粒复合材料的制备及吸波性能的研究[J]. 材料研究与应用, 2020, 14(3):171-178. doi: 10.3969/j.issn.1673-9981.2020.03.002

    DENG Yunfei, ZHANG Haiyan, HAN Cong’ai, et al. Preparation of three-dimensional honeycomb carbon-coated nano-iron particle composites and research on its microwave absorption properties[J]. Materials Research and Application,2020,14(3):171-178(in Chinese). doi: 10.3969/j.issn.1673-9981.2020.03.002
    [65]
    WU T, LIU Y, ZENG X, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption[J]. ACS Applied Materials & Interfaces,2016,8(11):7370-7380.
    [66]
    CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials,2004,16(5):401-405. doi: 10.1002/adma.200306460
    [67]
    WANG Y, GAO Y N, YUE T N, et al. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption[J]. Journal of Colloid and Interface Science,2022,607:210-218. doi: 10.1016/j.jcis.2021.08.206
    [68]
    WANG M, LIN Y, YANG H, et al. A novel plate-like BaFe12O19@MoS2 core-shell structure composite with excellent microwave absorbing properties[J]. Journal of Alloys and Compounds,2020,817:153265. doi: 10.1016/j.jallcom.2019.153265
    [69]
    SHI X L, CAO M S, FANG X Y. Β-MnO2/SiO2 core-shell nanorods: Synthesis and dielectric properties[J]. Journal of Nanoscience and Nanotechnology,2011,11(8):6953-6958. doi: 10.1166/jnn.2011.4252
    [70]
    SHI X L, CAO M S, FANG X Y, et al. High-temperature dielectric properties and enhanced temperature-response attenuation of β-MnO2 nanorods[J]. Applied Physics Letters,2008,93(22):223112. doi: 10.1063/1.3042210
    [71]
    GHASEMLOU M, LE P H, DAVER F, et al. Robust and eco-friendly superhydrophobic starch nanohybrid materials with engineered lotus leaf mimetic multiscale hierarchical structures[J]. ACS Applied Materials & Interfaces,2021,13(30):36558-36573.
    [72]
    JIA Z, LIN K, WU G, et al. Recent progresses of high-temperature microwave-absorbing materials[J]. Nano,2018,13(6):1830005. doi: 10.1142/s1793292018300050
    [73]
    YE Z, WANG K, LI X, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials[J]. Journal of Alloys and Compounds,2022,893:162396. doi: 10.1016/j.jallcom.2021.162396
    [74]
    WU J, HU R, ZENG S, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces,2020,12(16):19015-19022.
    [75]
    LIU Q, ZENG M, LIU J, et al. Fe-based material@N-doped carbon composites as environment-friendly microwave absorbers[J]. Carbon,2021,171:646-657. doi: 10.1016/j.carbon.2020.09.045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (3775) PDF downloads(694) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return