Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002
Citation: GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002

Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates

doi: 10.13801/j.cnki.fhclxb.20221221.002
Funds:  Key R&D Plan of Shanxi Province (202102150401003); Central Government Guides Local Projects (YDZJSX2022 A018); Innovation and Entrepreneurship Training Program for College Students (20210078)
  • Received Date: 2022-11-16
  • Accepted Date: 2022-12-14
  • Rev Recd Date: 2022-12-13
  • Available Online: 2022-12-23
  • Publish Date: 2023-11-01
  • Ti/Al laminated composite plates have the advantages of high strength and corrosion resistance of titanium alloy, light mass and low price of aluminum alloy, and have a wide range of potential applications in aerospace, automobile manufacturing, underwater equipment and other fields. In order to investigate the connection behavior of Ti/Al laminated composite members, vacuum electron beam welding (EBW) was used to weld Ti/Al laminated composite members, and the microstructure, interface behavior and mechanical properties of the welded joints were studied. The results showed that: Compared with single-side welding, the mechanical properties of welded Ti/Al laminated composite plates can be effectively improved by double-sided Al welding followed by Ti welding. There are no obvious defects at the interface of welded Ti/Al joints, and there are obvious intermetallic compounds (IMCs) layers at the interface of welded Ti/Al joints. The formation sequence of the compounds is TiAl3, TiAl and TiAl2. TiAl2 is the product of a series of reactions in which TiAl is used as an intermediate. Under the condition that the electron beam of Al layer remains unchanged at 43 mA, with the increase of the electron beam of Ti layer, the tensile strength and elongation of the welded joint both increase first and then decrease. The maximum tensile strength and elongation can reach 304.6 MPa and 10.4%, which is 57% of the strength of the base metal. The fracture mechanism of welded joint is mainly brittle fracture at IMCs position.

     

  • loading
  • [1]
    李蕊, 王浩. Ti811和TC4钛合金基材属性对激光熔覆自润滑耐磨复合涂层组织与性能的影响[J]. 复合材料学报, 2022, 39(12): 5984-5995.

    LI Rui, WANG Hao. Effect of Ti811 and TC4 titanium alloy substrate on microstructures and properties of laser cladding self-lubricating composite coatings[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5984-5995(in Chinese).
    [2]
    CHEN C, SUN G R, DU W B, et al. Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment[J]. Journal of Materials Research and Technology,2022,21:121-130. doi: 10.1016/j.jmrt.2022.09.028
    [3]
    MO T Q, CHEN J, CHEN Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion arbed Al/Ti laminated composites[J]. Materials Characterization,2020,170:110731. doi: 10.1016/j.matchar.2020.110731
    [4]
    XU M F, CHEN Y H, ZHANG T M, et al. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6Al-4V joints by electron beam welding[J]. Materials Characterization,2022,190:112090. doi: 10.1016/j.matchar.2022.112090
    [5]
    陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1):31-39. doi: 10.3969/j.issn.1674-6457.2018.01.004

    CHEN Guoqing, SHU Xi, LIU Junpeng, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering,2018,10(1):31-39(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.01.004
    [6]
    范林好. Re/GH3128电子束焊接接头组织和力学性能研究[D]. 上海: 上海工程技术大学, 2021.

    FAN Linhao. Study on microstructure and mechanical properties of Re/GH3128 electron beam welded joint[D]. Shanghai: Shanghai University of Engineering Science, 2021(in Chinese).
    [7]
    曲树平. 7075/TC4(TA1)异种金属电子束焊接工艺及机制研究[D]. 兰州: 兰州理工大学, 2019.

    QU Shuping. Study on electron beam welding process and mechanism of 7075/TC4(TA1) dissimilar metals[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).
    [8]
    赵啸, 高恩志, 徐荣正. 铜/铝异质金属层状复合板搅拌摩擦焊接技术研究[J]. 稀有金属材料与工程, 2022, 51(5):1752-1758.

    ZHAO Xiao, GAO Enzhi, XU Rongzheng. Research on friction stir welding technology of Al-Cu composite plates[J]. Rare Metal Materials and Engineering,2022,51(5):1752-1758(in Chinese).
    [9]
    李福山. 铝/铜复合板电子束焊接技术研究[D]. 沈阳: 沈阳航空航天大学, 2020.

    LI Fushan. Study on electron beam welding technology of Al/Cu composite plate[D]. Shenyang: Shenyang Aerospace University, 2020(in Chinese).
    [10]
    王毅. Ti/Al异种金属电子束熔钎焊重熔改性连接工艺研究[D]. 南京: 南京理工大学, 2018.

    WANG Yi. Study on modified bonding technology of Ti/Al dissimilar metals by electron beam welding and brazing[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).
    [11]
    吴新勇, 廖娟, 薛新, 等. 钛/铝异种合金脉冲激光焊接接头裂纹产生机制[J]. 精密成形工程, 2018, 10(6):95-101. doi: 10.3969/j.issn.1674-6457.2018.06.016

    WU Xinyong, LIAO Juan, XUE Xin, et al. Mechanism of crack generation inpulsed laser welded joint of titanium/aluminum dissimilar alloy[J]. Journal of Netshape Forming Engineering,2018,10(6):95-101(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.06.016
    [12]
    吴新勇. 钛/铝异种轻合金脉冲激光焊接工艺及接头性能研究[D]. 福州: 福州大学, 2020.

    WU Xinyong. Study on pulse laser welding technology and joint properties of Ti/Al dissimilar light alloy[D]. Fuzhou: Fuzhou University, 2020(in Chinese).
    [13]
    LIU J P, CHEN G Q, MA Y R, et al. Formation mechanism and control of welding cracks in dissimilar materials of Ni50Ti50 SMA and Ti-6Al-4V[J]. Journal of Manufacturing Processes,2022,75:552-564. doi: 10.1016/j.jmapro.2022.01.014
    [14]
    宋玉强, 马圣东, 李世春. Al/Ti扩散层形成的扩散溶解机制[J]. 焊接学报, 2014, 35(6):49-52, 89,115.

    SONG Yuqiang, MA Shengdong, LI Shichun. Diffusion and dissolve mechanism of Al/Ti diffusion layer formation[J]. Transactions of the China Welding Institution,2014,35(6):49-52, 89,115(in Chinese).
    [15]
    韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6):1270-1280. doi: 10.11817/j.ysxb.1004.0609.2020-35787

    HAN Jianchao, LIU Chang, JIA Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals,2020,30(6):1270-1280(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-35787
    [16]
    LU R H, LIU Y T, YAN M, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Technology,2021,297:117246. doi: 10.1016/j.jmatprotec.2021.117246
    [17]
    PUKENAS A, CHEKHONIN P, SCHARNWEBER J, et al. TiAl-based semi-finished material produced by reaction annealing of Ti/Al layered composite sheets[J]. Materials Today Communications,2022,30:103083. doi: 10.1016/j.mtcomm.2021.103083
    [18]
    GLASSER L. Additive single atom values for thermodynamics II: Enthalpies, entropies and Gibbs energies for formation of ionic solids[J]. Chemical Thermodynamics and Thermal Analysis,2022,7:100069. doi: 10.1016/j.ctta.2022.100069
    [19]
    KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transactions A,1992,23(8):2081-2090. doi: 10.1007/BF02646001
    [20]
    孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4):98-111. doi: 10.11868/j.issn.1005-5053.2014.4.010

    SUN Yanbo, MA Fengmei, XIAO Wenlong, et al. Preparation and performance characteristics for multilayered Ti-Al intermetallics alloys[J]. Journal of Aeronautical Materials,2014,34(4):98-111(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.010
    [21]
    袁树春, 章文滔, 陈玉华, 等. 焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J]. 电焊机, 2022, 52(6):118-125. doi: 10.7512/j.issn.1001-2303.2022.06.15

    YUAN Shuchun, ZHANG Wentao, CHEN Yuhua, et al. Effects of welding parameters on microstructure and mechanical properties of Ti/Al dissimilar metal magnetic pulse welded joints[J]. Electric Welding Machine,2022,52(6):118-125(in Chinese). doi: 10.7512/j.issn.1001-2303.2022.06.15
    [22]
    张立辉. 使用高熵合金填充材料的钛合金/铝合金激光搭接焊接头组织与性能研究[D]. 长春: 吉林大学, 2022.

    ZHANG Lihui. Microstructure and properties of laser lap joints of titanium/aluminum alloy using high entropy alloy filler materials[D]. Changchun: Jilin University, 2022(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (501) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return