Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Yaxin, CAI Yaling, CAO Zhenjiang, et al. Hard@soft composite carbon anodes towards synergistic potassium storage[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 192-200. doi: 10.13801/j.cnki.fhclxb.20220214.003
Citation: CHEN Yaxin, CAI Yaling, CAO Zhenjiang, et al. Hard@soft composite carbon anodes towards synergistic potassium storage[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 192-200. doi: 10.13801/j.cnki.fhclxb.20220214.003

Hard@soft composite carbon anodes towards synergistic potassium storage

doi: 10.13801/j.cnki.fhclxb.20220214.003
Funds:  National Natural Science Foundation of China (21975283); China Postdoctoral Science Foundation (2020M681762); State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource (KFKT2021007); CAS Key Laboratory of Carbon Materials (KLCMKFJJ2010)
  • Received Date: 2021-11-26
  • Accepted Date: 2022-01-22
  • Rev Recd Date: 2022-01-16
  • Available Online: 2022-02-15
  • Publish Date: 2023-01-15
  • Hard@soft composite carbon can improve the potassium storage performance synergistically by combining the advantage of hard carbon and soft carbon. But the potassium storage mechanism of different composite structure is lack. Here, rhodanine and F127 were used as the precursor of hard carbon, and the volatile matter of coal tar pitch was used as the precursor of soft carbon. Hard carbon, soft/hard hybrid carbon and soft carbon shell@hard carbon core composite were fabricated using co-carbonization and chemical vapor deposition. When used as the anode materials of potassium-ion battery, soft carbon shell@hard carbon core composite possesses high reversible capacity (365 mA·h·g−1 at 0.05 A·g−1), high cyclic stability (80% after 100 cycles), and excellent rate performance (177 mA·h·g−1 at 1 A·g−1). It can be ascribed to the abundance of active sites of hard carbon and the coating of soft carbon on the defect sites at the surface of hard carbon. Moreover, the soft carbon can improve the conductivity of the composite, which can enhance the rate performance of composite anode and release the voltage hysteresis. Benefiting from the synergistic potassium storage, soft carbon shell@hard carbon core composite anode shows much better performance than hard carbon anode.

     

  • loading
  • [1]
    ZHANG W C, LU J, GUO Z P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage[J]. Materials Today,2021,50:400-417. doi: 10.1016/j.mattod.2021.03.015
    [2]
    TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews,2021,121(3):1623-1669. doi: 10.1021/acs.chemrev.0c00767
    [3]
    CHEN Y X, XI B J, HUANG M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621
    [4]
    CAO B, ZHANG Q, LIU H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [5]
    PENG D Q, CHEN Y X, MA H L, et al. Enhancing the cycling stability by tuning the chemical bonding between phosphorus and carbon nanotubes for potassium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2020,12(33):37275-37284. doi: 10.1021/acsami.0c11577
    [6]
    CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A,2016,4(17):6472-6478. doi: 10.1039/C6TA00950F
    [7]
    钟旋, 简秀梅, 蒋恩臣, 等. 稻壳生物炭/醋酸酯淀粉-尿素复合膜的结构和性能[J]. 复合材料学报, 2019, 36(7):1746-1752.

    ZHONG Xuan, JIAN Xiumei, JIANG Enchen, et al. Structure and properties of rice husk biochar/acetate starch-urea starch composite films[J]. Acta Materiae Compositae Sinica,2019,36(7):1746-1752(in Chinese).
    [8]
    GAO F, ZANG Y H, WANG Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials, 2021, 36(1): 34-48.
    [9]
    WU Y M, ZHAO H T, WU Z G, et al. Rational design of carbon materials as anodes for potassium-ion batteries[J]. Energy Storage Materials,2021,34:483-507. doi: 10.1016/j.ensm.2020.10.015
    [10]
    陈惠, 刘洪波, 夏笑虹, 等. 石墨/酚醛树脂复合材料双极板的制备与性能[J]. 复合材料学报, 2015, 32(3):744-755.

    CHEN Hui, LIU Hongbo, XIA Xiaohong, et al. Preparation and properties of graphite/phenolic resin composite bipolar plate[J]. Acta Materiae Compositae Sinica,2015,32(3):744-755(in Chinese).
    [11]
    桂阳, 曾靖宇, 范宝安, 等. 膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制[J]. 复合材料学报, 2022, 39(1):256-263.

    GUI Yang, ZENG Jingyu, FAN Baoan, et al. Action mechanism of expanded graphite in the composite of expanded graphite/MnO2 supercapacitor electrode materials[J]. Acta Materiae Compositae Sinica,2022,39(1):256-263(in Chinese).
    [12]
    WANG D K, ZHANG J P, DONG Y, et al. Progress on graphitic carbon materials for potassium-based energy storage[J]. New Carbon Materials, 2021, 36(3): 435-448.
    [13]
    RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials,2020,30(12):1909486. doi: 10.1002/adfm.201909486
    [14]
    ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [15]
    ZENG S F, CHEN X J, XU R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms[J]. Nano Energy,2020,73:104807. doi: 10.1016/j.nanoen.2020.104807
    [16]
    WANG B, YUAN F, YU Q Y, et al. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries[J]. Energy Storage Materials,2021,38:329-337. doi: 10.1016/j.ensm.2021.03.021
    [17]
    LI Y, CHEN M H, LIU B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials,2020,10(27):2000927. doi: 10.1002/aenm.202000927
    [18]
    QIAN Y, JIANG S, LI Y, et al. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage[J]. Energy Storage Materials, 2020, 29: 341-349.
    [19]
    WANG B, PENG Y, YUAN F, et al. A comprehensive review of carbons anode for potassium-ion battery: Fast kinetic, structure stability and electrochemical[J]. Journal of Power Sources,2021,484:229244. doi: 10.1016/j.jpowsour.2020.229244
    [20]
    曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7):2025-2037.

    CAO Liansheng, ZHAO Chao, JIN Xin, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compositae Sinica,2021,38(7):2025-2037(in Chinese).
    [21]
    刘振源, 刘烈凯, 金鑫, 等. 沥青基软碳材料对硅负极锂离子电池性能的影响沥青基软碳材料对硅负极锂离子电池性能的影响[J]. 复合材料学报, 2019, 36(6):1568-1573.

    LIU Zhenyuan, LIU Liekai, JIN Xin, et al. Effect of asphalt-decomposed soft carbon on the performance of Si-based anode material in lithium ion battery[J]. Acta Materiae Compositae Sinica,2019,36(6):1568-1573(in Chinese).
    [22]
    WU X, CHEN Y L, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. doi: 10.1002/aenm.201900343
    [23]
    JIAN Z L, HWANG S, LI Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials,2017,27(26):1700324. doi: 10.1002/adfm.201700324
    [24]
    XIE F, XU Z, JENSEN A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials,2019,29(24):1901072. doi: 10.1002/adfm.201901072
    [25]
    LI Y, HU Y, LI H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(1):96-104. doi: 10.1039/C5TA08601A
    [26]
    DONG Y, ZHANG S, DU X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [27]
    韦会鸽, 彭紫芳, 陈安利, 等. 生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能[J]. 复合材料学报, 2022, 39(8):4028-4036.

    WEI Huige, PENG Zifang, CHEN Anli, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica,2022,39(8):4028-4036(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (904) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return