Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Chengcheng, REN Zhaohui, REN Qiang, et al. Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009
Citation: ZHANG Chengcheng, REN Zhaohui, REN Qiang, et al. Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2598-2608. doi: 10.13801/j.cnki.fhclxb.20220809.009

Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites

doi: 10.13801/j.cnki.fhclxb.20220809.009
Funds:  National Natural Science Foundation of China (51707049); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016027)
  • Received Date: 2022-05-24
  • Accepted Date: 2022-07-28
  • Rev Recd Date: 2022-07-07
  • Available Online: 2022-08-09
  • Publish Date: 2023-05-15
  • In order to study the effect of nano conductive particles with different microscopic morphologies on the direct current (DC) dielectric properties of low-density polyethylene (LDPE), polypyrrole (PPy) nanospheres and nanowires with a diameter of about 100 nm were prepared by soft template method, and melt blended with LDPE to obtain PPy/LDPE nanocomposites. The microscopic morphology of PPy nanoparticles and their dispersion structure in PPy/LDPE nanocomposites were observed by scanning electron microscopy (SEM). The crystallinity, space charge distribution, dielectric spectrum, and DC conductive current and DC breakdown strength of the composites at different temperatures were tested. The results show that the addition of PPy nanoparticles can improve the crystallinity of LDPE, inhibit the accumulation of space charges in LDPE and reduce the relative dielectric constant, DC conductive current and DC breakdown strength. The addition of PPy nanospheres can reduce the DC conductive current of LDPE by more than one order of magnitude at different temperatures, but has little effect on its DC breakdown strength, and can increase the DC breakdown strength of LDPE by 4.4% at a higher temperature. The improvement effect of PPy nanospheres on DC dielectric properties of LDPE insulation materials is better than that of PPy nanowires.

     

  • loading
  • [1]
    李春阳, 韩宝忠, 张城城, 等. 电压稳定剂提高PE/XLPE绝缘耐电性能研究综述[J]. 中国电机工程学报, 2017, 37(16):4850-4864.

    LI Chunyang, HAN Baozhong, ZHANG Chengcheng, et al. Review of voltage stabilizer improving the electrical strength of PE/XLPE[J]. Proceedings of the CSEE,2017,37(16):4850-4864(in Chinese).
    [2]
    巫运辉, 查俊伟, 王思蛟, 等. 多层介孔纳米MgO/低密度聚乙烯复合材料的制备及其绝缘性能[J]. 复合材料学报, 2016, 33(3):503-509.

    WU Yunhui, ZHA Junwei, WANG Sijiao, et al. Preparation and insulating electrical properties of multilayer mesoporous nano MgO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(3):503-509(in Chinese).
    [3]
    何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2):337-343.

    HE Jinliang, PENG Lin, ZHOU Yao. Research progress of environment-friendly HVDC power cable insulation materials[J]. High Voltage Engineering,2017,43(2):337-343(in Chinese).
    [4]
    杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1):179-191.

    DU Boxue, HAN Chenlei, LI Jin, et al. Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society,2019,34(1):179-191(in Chinese).
    [5]
    ZHOU Y, PENG S M, HU J L, et al. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(3):1308-1318. doi: 10.1109/TDEI.2017.006205
    [6]
    姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2):645-655.

    JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica,2022,39(2):645-655(in Chinese).
    [7]
    胡世勋, 张雅茹, 邵清, 等. 不同改性技术路线的聚丙烯基高压直流电缆绝缘材料综合性能比较[J]. 中国电机工程学报, 2022, 42(4):1243-1252. doi: 10.13334/j.0258-8013.pcsee.212446

    HU Shixun, ZHANG Yaru, SHAO Qing, et al. Comprehen-sive performance comparisons of polypropylene-based HVDC cable insulating materials adopting different modification technical routes[J]. Proceedings of the CSEE,2022,42(4):1243-1252(in Chinese). doi: 10.13334/j.0258-8013.pcsee.212446
    [8]
    杜伯学, 侯兆豪, 徐航, 等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展[J]. 高电压技术, 2017, 43(9):2769-2780.

    DU Boxue, HOU Zhaohao, XU Hang, et al. Research achievements in polypropylene and polypropylene/inorganic nanocomposites for HVDC cable insulation[J]. High Voltage Engineering,2017,43(9):2769-2780(in Chinese).
    [9]
    MURAKAMI Y, NEMOTO M, OKUZUMI S, et al. DC conduction and electrical breakdown of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):33-39. doi: 10.1109/T-DEI.2008.4446734
    [10]
    TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160. doi: 10.1109/T-DEI.2008.4446746
    [11]
    SMITH R C, LIANG C, LANDRY M, et al. The mechanisms leading to the useful electrical properties of polymer nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):187-196. doi: 10.1109/T-DEI.2008.4446750
    [12]
    程羽佳, 郭宁, 王若石, 等. 纳米ZnO和纳米MMT对低密度聚乙烯介电性能的影响[J]. 复合材料学报, 2015, 32(1):94-100.

    CHENG Yujia, GUO Ning, WANG Ruoshi, et al. Effects of nano-ZnO and nano-montmorillonte on dielectric properties of low density polyethylene[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):94-100(in Chinese).
    [13]
    DU B X, HAN C L, LI Z L, et al. Effect of graphene oxide particles on space charge accumulation in LDPE/GO nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(4):1479-1486. doi: 10.1109/TDEI.2018.006874
    [14]
    朱新丰, 曲鹏, 彭晓晗, 等. 有限元法研究填料形貌与介电常数对无机/有机介电复合材料介电性能的影响[J]. 复合材料学报, 2019, 36(12):2887-2893.

    ZHU Xinfeng, QU Peng, PENG Xiaohan, et al. Computational study of both morphologies and dielectric constant of fillers on dielectric properties of inorganic/organic dielectric composites by finite element method[J]. Acta Materiae Compositae Sinica,2019,36(12):2887-2893(in Chinese).
    [15]
    徐晓英, 王世安, 王辉. 复合导电高分子材料微观网络结构及导电行为仿真分析[J]. 高电压技术, 2012, 38(9):2221-2229.

    XU Xiaoying, WANG Shi'an, WANG Hui. Simulation analysis on the micro-network structure and conducting behavior of conductive polymer composites[J]. High Voltage Engineering,2012,38(9):2221-2229(in Chinese).
    [16]
    彭涛, 姚梓锋, 李海珊, 等. 聚吡咯纳米导电聚合物制备及表征[J]. 广州化工, 2022, 50(1):40-42, 47. doi: 10.3969/j.issn.1001-9677.2022.01.016

    PENG Tao, YAO Zifeng, LI Haishan, et al. Preparation and characterization of polypyrrole nano conductive polymer[J]. Guangzhou Chemical Industry,2022,50(1):40-42, 47(in Chinese). doi: 10.3969/j.issn.1001-9677.2022.01.016
    [17]
    于万永, 赵磊, 王宁, 等. 聚乙烯醇-聚吡咯复合纳米纤维的制备及其导电性能[J]. 复合材料学报, 2018, 35(5):1059-1065.

    YU Wanyong, ZHAO Lei, WANG Ning, et al. Fabrication and conductive properties of polyvinyl alcohol-polypyrrole composite nano fibers[J]. Acta Materiae Compositae Sinica,2018,35(5):1059-1065(in Chinese).
    [18]
    ZHANG C C, ZHANG H Y, LI C Y, et al. Crosslinked polyethylene/polypyrrole nanocomposites with improved direct current electrical characteristics[J]. Polymer Testing,2018,71:223-230. doi: 10.1016/j.polymertesting.2018.09.020
    [19]
    LI C M, DUAN S X, ZHANG C C, et al. Research on DC dielectric properties of polyaniline nanofibers/LDPE composites[J]. High Performance Polymers,2018,30(1):76-81. doi: 10.1177/0954008316680278
    [20]
    王亚林, 吴建东, 万佳东, 等. 低密度聚乙烯空间电荷与电导电流的联合测量[J]. 南方电网技术, 2015, 9(10):92-96. doi: 10.13648/j.cnki.issn1674-0629.2015.10.015

    WANG Yalin, WU Jiandong, WAN Jiadong, et al. Combined measurement of space charge and conduction current in low density polyethylene[J]. Southern Power System Technology,2015,9(10):92-96(in Chinese). doi: 10.13648/j.cnki.issn1674-0629.2015.10.015
    [21]
    谢侃, 陈冬梅, 蔡霞, 等. PE微观结构的红外光谱实用表征[J]. 合成树脂及塑料, 2005, 22(1):48-52. doi: 10.3969/j.issn.1002-1396.2005.01.013

    XIE Kan, CHEN Dongmei, CAI Xia, et al. Study on the practical characterization of the microstructure of polyethylene by infrared spectroscopy[J]. China Synthetic Resin and Plastics,2005,22(1):48-52(in Chinese). doi: 10.3969/j.issn.1002-1396.2005.01.013
    [22]
    TRAN H D, SHIN K, HONG W G, et al. A template-free route to polypyrrole nanofibers[J]. Macromolecular Rapid Communications,2007,28(24):2289-2293. doi: 10.1002/marc.200700581
    [23]
    ZHONG W B, LIU S M, CHEN X H, et al. High-yield synthe-sis of superhydrophilic polypyrrole nanowire networks[J]. Macromolecules,2006,39(9):3224-3230. doi: 10.1021/ma0525076
    [24]
    DAI T Y, YANG X M, LU Y. Controlled growth of polypyrrole nanotubule/wire in the presence of a cationic surfactant[J]. Nanotechnology,2006,17(12):3028-3034. doi: 10.1088/0957-4484/17/12/036
    [25]
    迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84. doi: 10.13801/j.cnki.fhclxb.201501.003

    CHI Xiaohong, YU Li, ZHENG Jie, et al. Crystal morphology and electrical dendronization characteristics of montmorillonite/polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese). doi: 10.13801/j.cnki.fhclxb.201501.003
    [26]
    钟琼霞, 兰莉, 吴建东, 等. 交联副产物对交联聚乙烯中空间电荷行为的影响[J]. 中国电机工程学报, 2015, 35(11):2903-2910.

    ZHONG Qiongxia, LAN Li, WU Jiandong, et al. The influence of cross-linked by-products on space charge behaviour in XLPE[J]. Proceedings of the CSEE,2015,35(11):2903-2910(in Chinese).
    [27]
    ZHANG L, ZHOU Y X, CUI X Y, et al. Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(4):1554-1564. doi: 10.1109/TDEI.2014.004361
    [28]
    ZHANG C C, WANG T T, SUN W F, et al. Grafting of antioxidant onto polyethylene to improve DC dielectric and thermal aging properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2021,28(2):541-549. doi: 10.1109/TDEI.2020.009261
    [29]
    易姝慧, 王亚林, 彭庆军, 等. 温度对交联聚乙烯中的空间电荷积累以及迁移的影响[J]. 中国电机工程学报, 2017, 37(19):5796-5803, 5857. doi: 10.13334/J.0258-8013.PCSEE.161356

    YI Shuhui, WANG Yalin, PENG Qingjun, et al. Effect of temperature on charge accumulation and migration in cross-linked polyethylene[J]. Proceedings of the CSEE,2017,37(19):5796-5803, 5857(in Chinese). doi: 10.13334/J.0258-8013.PCSEE.161356
    [30]
    DU B X, HAN C L, LI J, et al. Temperature-dependent DC conductivity and space charge distribution of XLPE/GO nanocomposites for HVDC cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(2):418-426. doi: 10.1109/TDEI.2019.008428
    [31]
    DU B X, HOU Z H, LI J, et al. Effect of graphene nanoplatelets on space charge and breakdown strength of PP/ULDPE blends for HVDC cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2405-2412. doi: 10.1109/TDEI.2018.007271
    [32]
    田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3):1-12. doi: 10.19595/j.cnki.1000-6753.tces.2011.03.001

    TIAN Fuqiang, YANG Chun, HE Lijuan, et al. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society,2011,26(3):1-12(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.2011.03.001
    [33]
    TANAKA T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12:914-928. doi: 10.1109/TDEI.2005.1522186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (683) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return