Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
FAN Xinyan, HUANG Junya, YANG Yanxiao, et al. Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002
Citation: FAN Xinyan, HUANG Junya, YANG Yanxiao, et al. Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3002-3017. doi: 10.13801/j.cnki.fhclxb.20220622.002

Fabrication and properties of multifunctional CeO2/cellulose nanofibers composite superhydrophobic coating

doi: 10.13801/j.cnki.fhclxb.20220622.002
Funds:  National Natural Science Foundation of China (31901247)
  • Received Date: 2022-05-09
  • Accepted Date: 2022-06-11
  • Rev Recd Date: 2022-06-05
  • Available Online: 2022-06-23
  • Publish Date: 2023-05-15
  • The superhydrophobic phenomenon in nature has attracted more attention due to its unique wettability. It is urgent that the preparation and application of superhydrophobic coating. Cerium dioxide (CeO2) was in situ synthesized on the surface of cellulose nanofibers (CNFs) by co-precipitation method using cerium nitrate hexahydrate (Ce(NO3)3·6H2O), following modified by octadecyltrimethoxysilane (OTMS) and the coating was constructed by spraying method. It investigated the effects of different mass ratios of CNFs, Ce(NO3)3·6H2O, and OTMS on coating morphology and hydrophobicity. The results show that the coatings consisting of CNFs, and Ce(NO3)3·6H2O with the mass ratios of 1∶5 and 1∶7 can construct the micro/nanostructure contributing to achieving superhydrophobic properties. When the mass ratios of CNFs, Ce(NO3)3·6H2O, and OTMS is 1∶5∶10, the coating static contact angle is (159.7±1.1)° and the sliding angle is (5.7±1.8)°. Its static contact angle can remain greater than 150° after the 150°C heating for 3 h and UV illumination for 36 h, meanwhile, possesses excellent pH stability and certain mecha-nical durability. When applied to glass, paper, wood, sponge, and other substrates, superhydrophobic surfaces can be constructed with excellent self-cleaning performance. The UV transmittance of superhydrophobic glass coating to UV-A and UV-B is 12.6% and 0.1%, respectively. The oil absorption efficiency of the superhydrophobic sponge is about 94%. This superhydrophobic coating is expected to use as a protective material and extends the application of rare earth metal oxidate in the cellulose-based superhydrophobic coating field.

     

  • loading
  • [1]
    YAN Y Y, GAO N, BARTHLOTT W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces[J]. Advances in Colloid and Interface Science,2011,169(2):80-105. doi: 10.1016/j.cis.2011.08.005
    [2]
    HU C, XIE X, REN K. A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance[J]. Journal of Alloys and Compounds,2021,882:160636. doi: 10.1016/j.jallcom.2021.160636
    [3]
    LONG Y, YIN X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal,2020,401:126137. doi: 10.1016/j.cej.2020.126137
    [4]
    MA W, LI Y, ZHANG M, et al. Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of orga-nic contaminants, and antibacterial performances[J]. ACS Applied Materials & Interfaces,2020,12(31):34999-35010.
    [5]
    REN J, TAO F, LIU L, et al. A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers,2020,232:115807. doi: 10.1016/j.carbpol.2019.115807
    [6]
    ZHAO S, YANG X, XU Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions[J]. Nano Research, 2022, 15: 5245-5255.
    [7]
    GUI L, LIN J, LIU J, et al. Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability[J]. Chemical Engineering Journal,2022,431:134103. doi: 10.1016/j.cej.2021.134103
    [8]
    ZHANG X, LIU S, SALIM A, et al. Hierarchical structured multifunctional self-cleaning material with durable superhydrophobicity and photocatalytic functionalities[J]. Small,2019,15(34):1901822. doi: 10.1002/smll.201901822
    [9]
    SINHA R S, DANGAYACH R, KWON Y N. Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance[J]. Chemical Engineering Journal,2021,405:126702. doi: 10.1016/j.cej.2020.126702
    [10]
    YOON J, RYU M, KIM H, et al. Wet-style superhydrophobic antifogging coatings for optical sensors[J]. Advanced Materials, 2020, 32(34): 2002710.
    [11]
    GUO Z, LIU W, SU B L. Superhydrophobic surfaces: From natural to biomimetic to functional[J]. Journal of Colloid and Interface Science,2011,353(2):335-355. doi: 10.1016/j.jcis.2010.08.047
    [12]
    WANG T, ZHAO Y. Fabrication of thermally and mechani-cally stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications[J]. Food Hydrocolloids,2021,120:106877. doi: 10.1016/j.foodhyd.2021.106877
    [13]
    BAI Z G, BAI Y Y, ZHANG G P, et al. A hydrogen bond based self-healing superhydrophobic octadecyltriethoxy silan-ligno cellulose/silica coating[J]. Progress in Organic Coatings,2021,151:106104. doi: 10.1016/j.porgcoat.2020.106104
    [14]
    ZHU Z, FU S, BASTA A H. A cellulose nanoarchitectonic: Multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose[J]. Carbohydrate Polymers,2020,243:116444. doi: 10.1016/j.carbpol.2020.116444
    [15]
    何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7):3121-3130.

    HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica,2022,39(7):3121-3130(in Chinese).
    [16]
    WANG X, GOU X, GUO Z. Robust superhydrophobic polyurea@cellulose nanocrystal coating[J]. New Journal of Chemistry,2020,44(27):11739-11745. doi: 10.1039/D0NJ02261F
    [17]
    KE W T, CHIU H L, LIAO Y C. Multifunctionalized cellulose nanofiber for water-repellent and wash-sustainable coatings on fabrics[J]. Langmuir,2020,36(28):8144-8151. doi: 10.1021/acs.langmuir.0c01145
    [18]
    陈黄敬一, 俞娟, 蒋杰, 等. TEMPO氧化修饰的天然多糖纳米纤维增强复合材料及其功能化研究进展[J]. 复合材料学报, 2022, 39(4):1425-1445.

    CHEN HUANG Jingyi, YU Juan, JIANG Jie, et al. Research progress of TEMPO oxidation modified natural polysaccharide nanofiber reinforced composites and their functionality[J]. Acta Materiae Compositae Sinica,2022,39(4):1425-1445(in Chinese).
    [19]
    PEGAH K, KING A W T, PARTL G J, et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters[J]. ACS Applied Materials & Interfaces,2018,10(13):11280-11288.
    [20]
    周静, 沈葵忠, 房桂干, 等. 漂白竹浆疏水改性纳米纤丝化纤维素的制备和表征[J]. 林业工程学报, 2017, 2(2):101-106.

    ZHOU Jing, SHEN Kuizhong, FANG Guigan, et al. Preparation and characterization of hydrophobic nanofibrillated cellulose fiber from bleached bamboo pulp[J]. Journal of Forestry Engineering,2017,2(2):101-106(in Chinese).
    [21]
    ZHAO X, PARK D S, CHOI J, et al. Robust, transparent, superhydrophobic coatings using novel hydrophobic/hydrophilic dual-sized silica particles[J]. Journal of Colloid and Interface Science,2020,574:347-354. doi: 10.1016/j.jcis.2020.04.065
    [22]
    XU P, LI X. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation[J]. Journal of Environmental Chemical Engineering,2021,9(4):105538. doi: 10.1016/j.jece.2021.105538
    [23]
    李洪峰, 林祥文, 王宏光, 等. 纳米TiO2超疏水涂层的制备与性能[J]. 森林工程, 2021, 37(5):111-117. doi: 10.3969/j.issn.1006-8023.2021.05.015

    LI Hongfeng, LIN Xiangwen, WANG Hongguang, et al. Fabrication and properties of nano-TiO2 superhydrophobic coating[J]. Forest Engineering,2021,37(5):111-117(in Chinese). doi: 10.3969/j.issn.1006-8023.2021.05.015
    [24]
    CHEN Q, XIONG J, CHEN G, et al. Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material[J]. International Journal of Biological Macromolecules,2020,158:781-789. doi: 10.1016/j.ijbiomac.2020.04.250
    [25]
    孙晓晗, 郭于田, 龙瑞, 等. 磁性超疏水棉布的制备及应用[J]. 森林工程, 2019, 35(3): 54-62.

    SUN Xiaohan, GUO Yutian, LONG Rui, et al. Preparation and application of magnetic superhydrophobic cotton cloth[J]. Forest Engineering, 2019, 35(3): 54-62(in Chinese).
    [26]
    XIE S, WANG Z, CHENG F, et al. Ceria and ceria-based nanostructured materials for photoenergy applications[J]. Nano Energy,2017,34:313-337. doi: 10.1016/j.nanoen.2017.02.029
    [27]
    WU Y, LIN X, CHEN L, et al. Preparation a skin disease UV protection polylactic acid film and crystallinity, mechani-cal properties characterization[J]. Materials Today Communications,2022,30:103085.
    [28]
    ZHANG B, HUYAN Y, WANG J, et al. Synthesis of CeO2 nanoparticles with different morphologies and their pro-perties as peroxidase mimic[J]. Journal of the American Ceramic Society, 2018, 102: 2218-2227.
    [29]
    LI X P, SUN Y L, XU Y Y, et al. UV-resistant and thermally stable superhydrophobic CeO2 nanotubes with high water adhesion[J]. Small,2018,14(27):1801040. doi: 10.1002/smll.201801040
    [30]
    WEI X L, LI N, YI W J, et al. High performance super-hydrophobic ZrO2-SiO2 porous ceramics coating with flower-like CeO2 micro/nano-structure[J]. Surface and Coatings Technology,2017,325:565-571. doi: 10.1016/j.surfcoat.2017.06.004
    [31]
    ZHANG C, LI C, SI X, et al. Mechanical durable ceria superhydrophobic coating fabricated by simple hot-press sintering[J]. Applied Surface Science,2020,529:147113. doi: 10.1016/j.apsusc.2020.147113
    [32]
    何辉, 张忠明, 姜勇刚, 等. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(S2):50-55.

    HE Hui, ZHANG Zhongming, JIANG Yonggang, et al. Research progress on preparation methods of rare earth oxide hydrophobic coatings[J]. Materials Reports,2021,35(S2):50-55(in Chinese).
    [33]
    ABE K, YANO H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber[J]. Cellulose,2009,16(6):1017-1023. doi: 10.1007/s10570-009-9334-9
    [34]
    ZHOU P, LV J, XU H, et al. Functionalization of cotton fabric with bismuth oxyiodide nanosheets: Applications for photodegrading organic pollutants, UV shielding and self-cleaning[J]. Cellulose,2019,26(4):2873-2884. doi: 10.1007/s10570-019-02281-8
    [35]
    MOHAMMAD A, KHAN M E, CHO M H, et al. Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite[J]. Applied Surface Science,2021,565:150337. doi: 10.1016/j.apsusc.2021.150337
    [36]
    JIA S, LU Y, LUO S, et al. Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl[J]. Chemical Engi-neering Journal,2019,366:439-448. doi: 10.1016/j.cej.2019.02.104
    [37]
    CHEN F F, DAI Z H, FENG Y N, et al. Customized cellulose fiber paper enabled by an in situ growth of ultralong hydroxyapatite nanowires[J]. ACS Nano,2021,15(3):5355-5365. doi: 10.1021/acsnano.0c10903
    [38]
    CHEN S, SONG Y, XU F. Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5173-5181.
    [39]
    LIU Z, ZHENG J, DUAN L, et al. Biomass-assisted synthesis of CeO2 nanorods for CO2 photoreduction under visible light[J]. ACS Applied Nano Materials,2021,4(4):4226-4237. doi: 10.1021/acsanm.1c00720
    [40]
    CHEN W, YU H, LIU Y, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose,2011,18(2):433-442. doi: 10.1007/s10570-011-9497-z
    [41]
    WANG Q, XIE D, CHEN J, et al. Facile fabrication of superhydrophobic and photoluminescent TEMPO-oxidized cellulose-based paper for anticounterfeiting application[J]. ACS Sustainable Chemistry & Engineering,2020,8(35):13176-13184.
    [42]
    WANG J, WANG H, WANG Y, et al. Rapid fabrication of a transparent superhydrophobic coating: Potential application with pollution-free under construction[J]. Applied Physics A, 2020, 126(7): 508.
    [43]
    ZHU Q, CHU Y, WANG Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386.
    [44]
    MATIN A, BAIG U, GONDAL M A, et al. Superhydrophobic and superoleophilic surfaces prepared by spray-coating of facile synthesized cerium(IV) oxide nanoparticles for efficient oil/water separation[J]. Applied Surface Science,2018,462:95-104. doi: 10.1016/j.apsusc.2018.08.104
    [45]
    ZHANG Z, ZHANG X, NIU D, et al. Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation[J]. Journal of Materials Chemistry B, 2017, 5(22): 4214-4220.
    [46]
    LICHTENSTEIN K, LAVOINE N. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose[J]. Polymer Degradation and Stability,2017,146:53-60. doi: 10.1016/j.polymdegradstab.2017.09.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (1330) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return