Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
MA Chaoyong, OU Yun, YAO Chenqi, et al. Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002
Citation: MA Chaoyong, OU Yun, YAO Chenqi, et al. Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002

Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode

doi: 10.13801/j.cnki.fhclxb.20220705.002
Funds:  Science and Technology Project of Hunan Provincial Department of Education (20 B225); Natural Science Foundation of Hunan Province (2020 JJ4288; 2021 JJ30257); National Natural Science Foundation of China (11972157); Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Open Fund (2018 TP1037-202002)
  • Received Date: 2022-05-16
  • Accepted Date: 2022-06-24
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-07-06
  • Publish Date: 2023-05-15
  • The urgent need for high-performance energy storage devices makes lithium-sulfur batteries (LSBs) with theoretical energy densities up to 2600 W·h/kg very attractive. However, the low capacity reversibility and the natural defect of sulfur's self-insulating property restrict its commercialization. In order to effectively improve the electrical conductivity of sulfur while suppressing the shuttle effect of polysulfides, the purpose of improving the electrochemical performance of LSBs is achieved. In this paper, a layer-by-layer coating method was used to coat the surface of the expanded graphite (EG)/sulfur (S) composite cathode with fluorinated vapor-deposited carbon fiber (FVGCF). A composite layer of LiF and FVGCF is formed on the surface of the pole piece. The electrochemical performance test and morphological characterization results show that the new cathode material using FVGCF has the best cycle life. The initial discharge specific capacity of EGS-FVGCF at 1 C current density is 691.8 mA h/g, and the remaining specific capacity after 100 cycles is 549.5 mA h/g. Compared with the EGS-coated single-layer structure, the double-layer battery coated with FVGCF on EGS has great application advantages, and the LiF generated during the discharge process can inhibit the shuttle of polysulfides from the positive electrode to the negative electrode. At the same time, the electrode morphology characterization after discharge and charge found that the addition of the FVGCF layer reduced the cracks on the surface of the pole piece, indicating that the FVGCF layer buffered the volume expansion of the sulfur cathode to a certain extent. This simple and easy-to-operate composite structure provides a certain reference for the development of high-performance LSBs.

     

  • loading
  • [1]
    TARASCON M A A J M. Building better batteries[J]. Nature,2008,451:652-657. doi: 10.1038/451652a
    [2]
    WANG G X, HE P G, FAN L Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery[J]. Advanced Functional Materials,2021,31(3):2007198. doi: 10.1002/adfm.202007198
    [3]
    LIU Y, HARIDAS A A K, LEE Y, et al. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Applied Surface Science, 2019, 472(1): 135-142.
    [4]
    陈宗宗, 张瑞丰. 基于Polymer-S-C/SiO2多层结构大孔电极锂硫离子电池的制备与性能[J]. 复合材料学报, 2014, 31(2): 525-531.

    CHEN Zongzong, ZHANG Ruifeng. Preparation and performance of lithium-sulfur batteries based on multilayer structure in polymer-S-C/SiO2 macroporous electrodes[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 525-531(in Chinese).
    [5]
    黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5): 1335-1341.

    HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1335-1341(in Chinese).
    [6]
    施再发, 杨少彬, 刘景东, 等. 化学沉淀法制备S-FeS/介孔碳复合材料及其电化学性能[J]. 复合材料学报, 2015, 32(2): 341-346.

    SHI Zaifa, YANG Shaobin, LIU Jingdong, et al. Preparation of S-FeS/mesoporous carbon composites by chemical precipitation and its electrochemical properties[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 341-346(in Chinese).
    [7]
    闫崇, 李向南, 曹朝霞, 等. 高能球磨法制备PTFE/科琴黑-C柔性复合材料及其电化学应用[J]. 复合材料学报, 2016, 33(10): 2390-2396.

    YAN Chong, LI Xiangnan, CAO Zhaoxia, et al. Preparation of PTFE/Ketjen Black-C flexible composites by high energy ball milling method and its electrochemical application[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2390-2396(in Chinese).
    [8]
    HERBERT J U D. Electric dry cells and storage batteries: US Patent, US3043896[P]. 1962-07-10.
    [9]
    CHUNG S H, MANTHIRAM A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. Journal of Physical Chemistry Letters,2014,5(11):1978-1983. doi: 10.1021/jz5006913
    [10]
    SINGHAL R, CHUNG S H, MANTHIRAM A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(8):4530-4538. doi: 10.1039/C4TA06511E
    [11]
    CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science,2014,7(8):2697-2705.
    [12]
    ZHANG S S. Binder based on polyelectrolyte for high capacity density lithium/sulfur battery[J]. Journal of the Electrochemical Society,2012,159(8):A1226-A1229. doi: 10.1149/2.039208jes
    [13]
    LI G R, CAI W L, LIU B H, et al. A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries[J]. Journal of Power Sources,2015,294:187-192. doi: 10.1016/j.jpowsour.2015.06.083
    [14]
    CHEN W, LEI T, QIAN T, et al. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(12): 1702889.
    [15]
    CHENG X B, HUANG J Q, ZHANG Q. Review-Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society,2018,165(1):A6058-A6072. doi: 10.1149/2.0111801jes
    [16]
    LI Z, JIANG Y, YUAN L X, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano,2014,8(9):9295-9303. doi: 10.1021/nn503220h
    [17]
    PONRAJ R, KANNAN A G, AHN J H, et al. Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide[J]. ACS Applied Materials & Interfaces,2016,8(6):4000-4006.
    [18]
    LIU H, LIU X, LI W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700283.
    [19]
    QI M L, LIANG X Q, WANG F, et al. Sulfur-impregnated disordered SnO2/carbon aerogel core-shell microspheres cathode for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,799:345-350. doi: 10.1016/j.jallcom.2019.05.366
    [20]
    GONG Y, FU C, DONG A, et al. Polar ultrathin self-doping carbon nitride nanosheets with intrinsic polysulfide adsorption for high performance lithium-sulfur batteries[J]. Batteries & Supercaps,2018,1(5):192-201.
    [21]
    HE D, XIANG J, ZHA C, et al. The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries[J]. Applied Surface Science,2020:525(30): 146625-146632.
    [22]
    LIU M, ZHOU D, JIANG H R, et al. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte[J]. Nano Energy,2016,28:97-105. doi: 10.1016/j.nanoen.2016.08.033
    [23]
    SUN W, OU X, YUE X, et al. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries[J]. Electrochimica Acta,2016,207:198-206. doi: 10.1016/j.electacta.2016.04.135
    [24]
    ZEGEYE T A, KUO C F J, WOTANGO A S, et al. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries[J]. Journal of Power Sources,2016,324:239-252. doi: 10.1016/j.jpowsour.2016.05.080
    [25]
    LI C, ZHANG P, DAI J, et al. Rational method for improving the performance of lithium-sulfur batteries: Coating the separator with lithium fluoride[J]. ChemElectroChem,2017,4(6):1535-1543. doi: 10.1002/celc.201700154
    [26]
    WU F, QIAN J, CHEN R, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries[J]. ACS Applied Materials & Interfaces,2014,6(17):15542-15549.
    [27]
    LIU Y, QIN X, ZHANG S, et al. Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26264-26273. doi: 10.1021/acsami.8b07316
    [28]
    RAULO A, BANDYOPADHYAY S, AHAMAD S, et al. Bio-inspired poly(3, 4-ethylenedioxythiophene) : poly(styrene sulfonate)-sulfur@polyacrylonitrile electrospun nanofibers for lithium-sulfur batteries[J]. Journal of Power Sources,2019,431:250-258. doi: 10.1016/j.jpowsour.2019.05.055
    [29]
    LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials,2009,21(19):4724-4730. doi: 10.1021/cm902050j
    [30]
    ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials,2015,5(16):1500117.
    [31]
    WANG Q, WEN Z, YANG J, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithiume sulfur batteries[J]. Journal of Power Sources,2016,306:347-353. doi: 10.1016/j.jpowsour.2015.11.109
    [32]
    YAO H, YAN K, LI W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy & Environmental Science,2014,7(10):3381-3390. doi: 10.1039/C4EE01377H
    [33]
    ZHANG Y Y, LI K, LI H, et al. High sulfur loading lithium-sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers[J]. Journal of Materials Chemistry A,2017,5(1):97-101. doi: 10.1039/C6TA08264E
    [34]
    QIE L, MANTHIRAM A. High-energy-density lithium-sulfur batteries based on blade-cast pure sulfur electrodes[J]. ACS Energy Letters,2016,1(1):46-51. doi: 10.1021/acsenergylett.6b00033
    [35]
    SUN L, LI M Y, JIANG Y, et al. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries[J]. Nano Letters,2014,14(7):4044-4049. doi: 10.1021/nl501486n
    [36]
    ZHU X, WEN Z, GU Z, et al. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries[J]. Journal of Power Sources,2005,139(1-2):269-273. doi: 10.1016/j.jpowsour.2004.07.002
    [37]
    SAYAHPOUR B, HIRSH H, BAI S, et al. Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery[J]. Advanced Energy Materials, 2022, 12(5): 2103196.
    [38]
    LEI T, XIE Y, WANG X, et al. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries[J]. Small, 2017, 13(37): 1701013.
    [39]
    CHENG P, GUO P Q, LIU D Q, et al. Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,784:149-156. doi: 10.1016/j.jallcom.2019.01.041
    [40]
    LI Y, MENG L, JIN L, et al. A wet-laid carbon paper with 3D conductive structure as an interlayer for lithium-sulfur batteries[J]. Materials Research Express,2019,6(12):125547-125555.
    [41]
    SONG X, WANG S Q, CHEN G P, et al. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries[J]. Chemical Engineering Journal,2018,333:564-571. doi: 10.1016/j.cej.2017.09.186
    [42]
    YUAN W, QIU Z Q, WANG C, et al. Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries[J]. Chemical Engineering Journal,2020,381:122648-122660.
    [43]
    JOSHI A, RAULO A, BANDYOPADHYAY S, et al. Waste cotton cloth derived flexible current collector with optimized electrical properties for high performance lithium-sulfur batteries[J]. Carbon,2022,192:429-437. doi: 10.1016/j.carbon.2022.03.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (698) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return