Turn off MathJax
Article Contents
Guanlong YU, Peiyuan LI, Kai YANG, Qifang SUN, Yi YANG. Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica.
Citation: Guanlong YU, Peiyuan LI, Kai YANG, Qifang SUN, Yi YANG. Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica.

Performance study of Fe(III)-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride

Funds:  Hunan graduate Research Innovation Project (CX20210784); Project supported by Hunan Provincial Natural Science Foundation of China (No. 2021JJ30728); the Scientific Research Projects of Ecology and Environment Department of Hunan (No. HBKT-2021012); the Water Conservancy Science and Technology Project of Hunan Province (No. XSKJ2022068-03)
  • Received Date: 2022-11-10
  • Accepted Date: 2022-12-31
  • Rev Recd Date: 2022-12-17
  • Available Online: 2023-02-04
  • Tetracycline hydrochloride (TC-HCl), which can be released into the aquatic environment through excreta, poses a potential threat to aquatic systems and human health due to its stable structure and difficult biodegradability. As one of the photocatalytic materials of great interest, BiOCl development applications are limited by the low solar light utilization and the hight rate of photogenerated electron-hole recombination. In this study, Fe-doped BiOCl porous microspheres self-assembled from two-dimensional nanosbeets were synthesized by a one-pot solvothermal method without the addition of surfactants, and the degradation properties for TC-HCl was investigated. The results showed that Fe doping narrowed the forbidden band width of BiOCl, thereby improving the light absorption intensity and broadening the photoresponse range to the visible region. Fe doping accelerates the separation of photogenerated carriers and improves the photocatalytic performance of BiOCl. The 0.15-Fe/BiOCl has the best removal effect on TC-HCl (30 mg/L), and the removal rate can reach 92% after dark adsorption and photocatalysis. Combined with the experimental results, the mechanism of photocatalytic degradation of TC-HCl by Fe-doped BiOCl under visible light was revealed in this study, and the reasons for the reduction of cycling activity were analyzed, which provided a promising method for the preparation of transition metal-doped BiOCl materials with high photocatalytic activity and feasible insights for improving the cycling activity of materials.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return