Citation: | XING Yue, HE Pengfei, LI Jinglong, WANG Rong, CHEN Yongxiong, LIANG Xiubing. Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20230224.001 |
[1] |
田振生, 刘大伟, 李刚, 等. 连续纤维增强热塑性树脂预浸料的研究进展[J]. 复合材料科学与工程, 2013(6):119-124. doi: 10.3969/j.issn.1003-0999.2013.06.025
TIAN Zhensheng, LIU Dawei, LI Gang, et al. Research progress of continuous fiber reinforced thermoplastic resin prepreg[J]. Composites Science and Engineering,2013(6):119-124(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.06.025
|
[2] |
何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011(2):7-13. doi: 10.3969/j.issn.1003-6423.2011.02.002
HE Yafei, JIAO Weicheng, YANG Fan, et al. Development of resin matrix composite molding process[J]. Fiber Composites,2011(2):7-13(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.002
|
[3] |
CAMPBELL F. Manufacturing processes for advanced composites[M]. Amsterdam: Elsevier, 2003.
|
[4] |
MAZUMDAR S. Composites manufacturing: Materials, product, and process engineering[M]. New York: CRC press, 2001.
|
[5] |
MALLICK P K. Fiber-reinforced composites: Materials, manufacturing, and design[M]. Boca Raton: CRC press, 2007.
|
[6] |
MORI K, MAENO T, NAKAGAWA Y. Dieless forming of carbon fibre reinforced plastic parts using 3D printer[J]. Procedia Engineering,2014,81:1595-1600. doi: 10.1016/j.proeng.2014.10.196
|
[7] |
MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
|
[8] |
ATTARAN M. The rise of 3D printing: The advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons,2017,60(5):677-688. doi: 10.1016/j.bushor.2017.05.011
|
[9] |
COLLINS R. 3D printing composites 2020-2030: Technology and market analysis current and future technologies, and market forecasts[R]. Cambridge: IDTechEx Res, 2020: 122.
|
[10] |
HOFSTÄTTER T, PEDERSEN D B, TOSELLO G, et al. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies[J]. Journal of Reinforced Plastics and Composites,2017,36(15):1061-1073. doi: 10.1177/0731684417695648
|
[11] |
WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
|
[12] |
BETTINI P, ALITTA G, SALA G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic[J]. Journal of Materials Engineering and Performance,2017,26(2):843-848. doi: 10.1007/s11665-016-2459-8
|
[13] |
LI J, DURANDET Y, HUANG X, et al. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J]. Journal of Materials Science & Technology,2022,119:219-244.
|
[14] |
PANDELIDI C, BATEMAN S, PIEGERT S, et al. The technology of continuous fibre-reinforced polymers: A review on extrusion additive manufacturing methods[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3057-3077.
|
[15] |
ZHANG H, HUANG T, JIANG Q, et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: A review[J]. Journal of Materials Science,2021,56(23):12999-13022. doi: 10.1007/s10853-021-06111-w
|
[16] |
ZHUO P, LI S, ASHCROFT I A, et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook[J]. Composites Part B: Engineering,2021,224:109143. doi: 10.1016/j.compositesb.2021.109143
|
[17] |
MASHAYEKHI F, BARDON J, BERTHÉ V, et al. Fused filament fabrication of polymers and continuous fiber-reinforced polymer composites: Advances in structure optimization and health monitoring[J]. Polymers,2021,13(5):789. doi: 10.3390/polym13050789
|
[18] |
KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476. doi: 10.1016/j.compstruct.2019.111476
|
[19] |
TIAN X, TODOROKI A, LIU T, et al. 3D printing of continuous fiber reinforced polymer composites: Development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016
|
[20] |
SAFARI F, KAMI A, ABEDINI V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties[J]. Polymers and Polymer Composites,2022,30:09673911. doi: 10.1177/09673911221098734
|
[21] |
WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science,2020,111:100638. doi: 10.1016/j.pmatsci.2020.100638
|
[22] |
SHANMUGAM V, RAJENDRAN D J J, BABU K, et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing[J]. Polymer Testing,2021,93:106925. doi: 10.1016/j.polymertesting.2020.106925
|
[23] |
BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039
|
[24] |
RÁTHY I, KUKI Á, BORDA J, et al. Preparation and characterization of poly (vinyl chloride)-continuous carbon fiber composites[J]. Journal of Applied Polymer Science,2012,124(1):190-194. doi: 10.1002/app.33617
|
[25] |
DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004
|
[26] |
SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029
|
[27] |
DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures,2019,212:381-388. doi: 10.1016/j.compstruct.2019.01.050
|
[28] |
NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing,2019,26:227-241. doi: 10.1016/j.addma.2018.12.020
|
[29] |
CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054
|
[30] |
RAHIM T N A T, ABDULLAH A M, AKIL H M, et al. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling[J]. Express Polymer Letters,2017,11(12):963-982. doi: 10.3144/expresspolymlett.2017.92
|
[31] |
CHACÓN J M, CAMINERO M A, GARCÍA-PLAZA E, et al. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection[J]. Materials & Design,2017,124:143-157.
|
[32] |
ALAIMO G, MARCONI S, COSTATO L, et al. Influence of meso-structure and chemical composition on FDM 3D-printed parts[J]. Composites Part B: Engineering,2017,113:371-380. doi: 10.1016/j.compositesb.2017.01.019
|
[33] |
ZHAO F, LI D, JIN Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications[J]. Materials,2018,11(2):288. doi: 10.3390/ma11020288
|
[34] |
RINALDI M, GHIDINI T, CECCHINI F, et al. Additive layer manufacturing of poly(ether ether ketone) via FDM[J]. Composites Part B: Engineering,2018,145:162-172. doi: 10.1016/j.compositesb.2018.03.029
|
[35] |
LEE C U, VANDENBRANDE J, GOETZ A E, et al. Room temperature extrusion 3D printing of polyether ether ketone using a stimuli-responsive binder[J]. Additive Manufacturing,2019,28:430-438. doi: 10.1016/j.addma.2019.05.008
|
[36] |
GEBISA A W, LEMU H G. Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment[J]. Materials,2018,11(4):500. doi: 10.3390/ma11040500
|
[37] |
TAYLOR G, WANG X, MASON L, et al. Flexural behavior of additively manufactured Ultem 1010: Experiment and simulation[J]. Rapid Prototyping Journal,2018,24(6):1003-1011. doi: 10.1108/RPJ-02-2018-0037
|
[38] |
WU H, SULKIS M, DRIVER J, et al. Multi-functional ULTEM™ 1010 composite filaments for additive manufacturing using fused filament fabrication (FFF)[J]. Additive Manufacturing,2018,24:298-306. doi: 10.1016/j.addma.2018.10.014
|
[39] |
KOTLINSK J. Mechanical properties of commercial rapid prototyping materials[J]. Rapid Prototyping Journal,2014,20(6):499-510. doi: 10.1108/RPJ-06-2012-0052
|
[40] |
LANZOTTI A, GRASSO M, STAIANO G, et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer[J]. Rapid Prototyping Journal,2015,21(5):604-617. doi: 10.1108/RPJ-09-2014-0135
|
[41] |
LI W, SANG L, JIAN X, et al. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF[J]. International Journal of Adhesion and Adhesives,2020,100:102614. doi: 10.1016/j.ijadhadh.2020.102614
|
[42] |
KARGER-KOCSIS J, MAHMOOD H, PEGORETTI A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science,2015,73:1-43. doi: 10.1016/j.pmatsci.2015.02.003
|
[43] |
YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098
|
[44] |
ZHANG Y C, WANG X. Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites[J]. International Journal of Solids and Structures,2005,42(20):5399-5412. doi: 10.1016/j.ijsolstr.2005.02.038
|
[45] |
GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271. doi: 10.1002/admt.201800271
|
[46] |
ZHAO H, LIU X, ZHAO W, et al. An overview of research on FDM 3D printing process of continuous fiber reinforced composites[C]//International Conference on Advanced Algorithms and Control Engineering, ICAACE 2019—Electronics Engineering and Process Control. Guilin: IOP Publishing, 2019, 1213(5): 052037.
|
[47] |
TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal,2014,20(3):192-204. doi: 10.1108/RPJ-01-2013-0012
|
[48] |
AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. An innovative design approach in three-dimensional printing of continuous fiber-reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2020,234(1-2):243-259. doi: 10.1177/0954405419843780
|
[49] |
MATSCHINSKI A. Integration of continuous fibers in additive manufacturing processes[C]//Virtual Symposium on AFP and AM. Canberra: Technical University of Munich and Australian National University, 2020.
|
[50] |
KÖHLER T, RÖDING T, GRIES T, et al. An overview of impregnation methods for carbon fibre reinforced thermoplastics[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2017, 742: 473-481.
|
[51] |
CARNEVALE P. Fibre-matrix interfaces in thermoplastic composites: A meso-level approach[D]. Holland: Technische Universiteit Delft, 2014.
|
[52] |
WANG F, WANG G, NING F, et al. Fiber-matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites[J]. Additive Manufacturing,2021,37:101661. doi: 10.1016/j.addma.2020.101661
|
[53] |
TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
|
[54] |
OMURO R, MATSUZAKI R, HIRANO Y, et al. Mechanical testing of a 3D-printed continuous carbon fiber reinforced polylactic acid composite by in-nozzle impregnation fused-deposition modelling[J]. SAMPE Journal,2018,54:12-20.
|
[55] |
JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. doi: 10.1016/j.compstruct.2017.11.052
|
[56] |
GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89. doi: 10.1016/j.matdes.2017.10.021
|
[57] |
HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering,2019,175:107147. doi: 10.1016/j.compositesb.2019.107147
|
[58] |
UŞUN A, GÜMRÜK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112
|
[59] |
LIU T, TIAN X, ZHANG Y, et al. High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105770. doi: 10.1016/j.compositesa.2020.105770
|
[60] |
MING Y, ZHANG S, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing,2020,33:101184. doi: 10.1016/j.addma.2020.101184
|
[61] |
MING Y, XIN Z, ZHANG J, et al. Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling[J]. Composites Communications,2020,21:100401. doi: 10.1016/j.coco.2020.100401
|
[62] |
LUO H, TAN Y, ZHANG F, et al. Selectively enhanced 3D printing process and performance analysis of continuous carbon fiber composite material[J]. Materials,2019,12(21):3529. doi: 10.3390/ma12213529
|
[63] |
LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001
|
[64] |
WANG Y, KONG D, ZHANG Q, et al. Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling[J]. Journal of Reinforced Plastics and Composites,2021,40(17-18):686-698. doi: 10.1177/0731684421998017
|
[65] |
BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing,2018,21:1-16. doi: 10.1016/j.addma.2018.01.002
|
[66] |
BRENKEN B, FAVALORO A, BAROCIO E, et al. Development of a model to predict temperature history and crystallization behavior of 3D printed parts made from fiber-reinforced thermoplastic polymers[C]//SAMPE Conference Proceedings. Long Beach: Society for the Advancement of Material and Process Engineering, 2016: 23-26.
|
[67] |
ZHOU Y, NYBERG T, XIONG G, et al. Temperature analysis in the fused deposition modeling process[C]//2016 3rd International Conference on Information Science and Control Engineering (ICISCE). Beijing: IEEE, 2016: 678-682.
|
[68] |
COSTA S F, DUARTE F M, COVAS J A. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process[J]. Virtual and Physical Prototyping,2015,10(1):35-46. doi: 10.1080/17452759.2014.984042
|
[69] |
LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
|
[70] |
LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. doi: 10.1557/jmr.2018.131
|
[71] |
LUO M, TIAN X, SHANG J, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812
|
[72] |
NAKAGAWA Y, MORI K, YOSHINO M. Laser-assisted 3D printing of carbon fibre reinforced plastic parts[J]. Journal of Manufacturing Processes,2022,73:375-384. doi: 10.1016/j.jmapro.2021.11.025
|
[73] |
LI N, LINK G, JELONNEK J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics[J]. CIRP Annals,2020,69(1):221-224. doi: 10.1016/j.cirp.2020.04.057
|
[74] |
LI N, LINK G, JELONNEK J. 3D microwave printing temperature control of continuous carbon fiber reinforced composites[J]. Composites Science and Technology,2020,187:107939. doi: 10.1016/j.compscitech.2019.107939
|
[75] |
UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985
|
[76] |
KISHORE V, AJINJERU C, NYCZ A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components[J]. Additive Manufacturing,2017,14:7-12. doi: 10.1016/j.addma.2016.11.008
|
[77] |
PARTAIN S C. Fused deposition modeling with localized pre-deposition heating using forced air[D]. Bozeman: Montana State University-Bozeman, College of Engineering, 2007.
|
[78] |
SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer,2014,55(23):5969-5979. doi: 10.1016/j.polymer.2014.07.054
|
[79] |
CHEN K, YU L, CUI Y, et al. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717
|
[80] |
CHANG B, PARANDOUSH P, LI X, et al. Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing[J]. Polymer Composites,2020,41(11):4706-4715. doi: 10.1002/pc.25744
|
[81] |
CHU Q, LI Y, XIAO J, et al. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration-assisted automated fiber placement[J]. Journal of Thermoplastic Composite Materials,2018,31(3):339-358. doi: 10.1177/0892705717697781
|
[82] |
LIU S J, CHANG I T, HUNG S W. Factors affecting the joint strength of ultrasonically welded polypropylene composites[J]. Polymer Composites,2001,22(1):132-141. doi: 10.1002/pc.10525
|
[83] |
ANITHA R, ARUNACHALAM S, RADHAKRISHNAN P. Critical parameters influencing the quality of prototypes in fused deposition modelling[J]. Journal of Materials Processing Technology,2001,118(1-3):385-388. doi: 10.1016/S0924-0136(01)00980-3
|
[84] |
NANCHARAIAH T, RAJU D R, RAJU V R. An experimental investigation on surface quality and dimensional accuracy of FDM components[J]. International Journal on Emerging Technologies,2010,1(2):106-111.
|
[85] |
CARNEIRO O S, SILVA A F, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design,2015,83:768-776.
|
[86] |
CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
|
[87] |
HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science,2018,53(3):1887-1898. doi: 10.1007/s10853-017-1624-2
|
[88] |
RANKOUHI B, JAVADPOUR S, DELFANIAN F, et al. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation[J]. Journal of Failure Analysis and Prevention,2016,16(3):467-481. doi: 10.1007/s11668-016-0113-2
|
[89] |
SHUBHAM P, SIKIDAR A, CHAND T. The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2016, 706: 63-67.
|
[90] |
CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688
|
[91] |
SANEI S H R, POPESCU D. 3D-printed carbon fiber reinforced polymer composites: A systematic review[J]. Journal of Composites Science,2020,4(3):98. doi: 10.3390/jcs4030098
|
[92] |
ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164. doi: 10.1016/j.addma.2018.05.007
|
[93] |
VAN DER KLIFT F, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials,2016,6(1):18. doi: 10.4236/ojcm.2016.61003
|
[94] |
PYL L, KALTEREMIDOU K A, VAN HEMELRIJCK D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites[J]. Polymer Testing,2018,71:318-328. doi: 10.1016/j.polymertesting.2018.09.022
|
[95] |
WANG K, LI S, RAO Y, et al. Flexure behaviors of ABS-based composites containing carbon and Kevlar fibers by material extrusion 3D printing[J]. Polymers,2019,11(11):1878. doi: 10.3390/polym11111878
|
[96] |
DING Q, LI X, ZHANG D, et al. Anisotropy of poly(lactic acid)/carbon fiber composites prepared by fused deposition modeling[J]. Journal of Applied Polymer Science,2020,137(23):48786. doi: 10.1002/app.48786
|
[97] |
SANEI S H R, ARNDT A, DOLES R. Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites[J]. Journal of Composite Materials,2020,54(20):2687-2695. doi: 10.1177/0021998320902510
|
[98] |
SUGIYAMA K, MATSUZAKI R, MALAKHOV A V, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology,2020,186:107905. doi: 10.1016/j.compscitech.2019.107905
|
[99] |
HOU Z, TIAN X, ZHANG J, et al. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites[J]. Composites Science and Technology,2021,201:108502. doi: 10.1016/j.compscitech.2020.108502
|
[100] |
SHANG J, TIAN X, LUO M, et al. Controllable inter-line bonding performance and fracture patterns of continuous fiber reinforced composites by sinusoidal-path 3D printing[J]. Composites Science and Technology,2020,192:108096. doi: 10.1016/j.compscitech.2020.108096
|
[101] |
WANG T, LI N, LINK G, et al. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics[J]. Composites Part A: Applied Science and Manufacturing,2021,140:106181. doi: 10.1016/j.compositesa.2020.106181
|
[102] |
PAPAPETROU V S, PATEL C, TAMIJANI A Y. Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites[J]. Composites Part B: Engineering,2020,183:107681. doi: 10.1016/j.compositesb.2019.107681
|
[103] |
FERNANDES R R, VAN DE WERKEN N, KOIRALA P, et al. Experimental investigation of additively manufactured continuous fiber reinforced composite parts with optimized topology and fiber paths[J]. Additive Manufacturing,2021,44:102056. doi: 10.1016/j.addma.2021.102056
|
[104] |
VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B: Engineering,2019,160:684-692. doi: 10.1016/j.compositesb.2018.12.094
|
[105] |
LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications,2021,27:100907. doi: 10.1016/j.coco.2021.100907
|
[106] |
CHENG P, PENG Y, LI S, et al. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook[J]. Composites Part B: Engineering,2023,250:110450. doi: 10.1016/j.compositesb.2022.110450
|
[107] |
HUANG Y, TIAN X, ZHENG Z, et al. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure[J]. Composite Structures,2022,285:115241. doi: 10.1016/j.compstruct.2022.115241
|
[108] |
EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing,2017,18:48-57. doi: 10.1016/j.addma.2017.08.013
|
[109] |
WANG Z, LUAN C, LIAO G, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B: Engineering,2019,176:107215. doi: 10.1016/j.compositesb.2019.107215
|
[110] |
LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design,2018,137:235-244.
|
[111] |
LI N, LINK G, MA J, et al. LiDAR based multi-robot cooperation for the 3D printing of continuous carbon fiber reinforced composite structures[C]//12th International Conference on Manufacturing Research (ICMR2014). Amsterdam: IOS Press, 2021: 125-132.
|
[112] |
CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing,2019,26:94-105. doi: 10.1016/j.addma.2019.01.005
|
[113] |
秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):196-204.
QIN Ruosen, SUN Shouzheng, HAN Zhenyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):196-204(in Chinese).
|
[114] |
陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):167-191.
CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):167-191(in Chinese).
|
[115] |
田小永. 纤维增强树脂基复合材料增材制造技术[M]. 北京: 国防工业出版社, 2021: 86-119.
TIAN Xiaoyong. Additive manufacturing technologies for fiber reinforced polymer matrix composites[M]. Beijing: National Defense Industry Press, 2021: 86-119(in Chinese).
|
[116] |
夏正付. 纤维增强复合材料增材制造技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
XIA Zhengfu. Study on additive manufacturing of fiber reinforced thermo-plastic composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
|