Turn off MathJax
Article Contents
XING Yue, HE Pengfei, LI Jinglong, WANG Rong, CHEN Yongxiong, LIANG Xiubing. Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20230224.001
Citation: XING Yue, HE Pengfei, LI Jinglong, WANG Rong, CHEN Yongxiong, LIANG Xiubing. Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20230224.001

Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique

doi: 10.13801/j.cnki.fhclxb.20230224.001
  • Received Date: 2022-12-07
  • Accepted Date: 2023-02-19
  • Rev Recd Date: 2023-01-19
  • Available Online: 2023-02-27
  • Compared with metal, ceramic or other structural materials, continuous fiber-reinforced polymer composites can offer significant advantage for their excellent design tailorability, mechanical properties, fracture toughness, good resistance to corrosion and fatigue, and are widely used in aerospace, transportation, energy, machinery and other fields. The organic combination of continuous fiber-reinforced polymer composites and additive manufacturing technology has the potential to promote new revolution for weight saving and structure-function integrated manufacturing of high-end equipment. This paper reviewed the recent research progress of extrusion and impregnation methods, printing temperature, auxiliary process, printing speed, printing spacing and geometric construction methods in additive manufacturing of continuous fiber composites. The influence of various process parameters on properties of the formed parts was emphatically discussed. Finally, the present challenges and future development directions have been prospected for reference.


  • loading
  • [1]
    田振生, 刘大伟, 李刚, 等. 连续纤维增强热塑性树脂预浸料的研究进展[J]. 复合材料科学与工程, 2013(6):119-124. doi: 10.3969/j.issn.1003-0999.2013.06.025

    TIAN Zhensheng, LIU Dawei, LI Gang, et al. Research progress of continuous fiber reinforced thermoplastic resin prepreg[J]. Composites Science and Engineering,2013(6):119-124(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.06.025
    何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011(2):7-13. doi: 10.3969/j.issn.1003-6423.2011.02.002

    HE Yafei, JIAO Weicheng, YANG Fan, et al. Development of resin matrix composite molding process[J]. Fiber Composites,2011(2):7-13(in Chinese). doi: 10.3969/j.issn.1003-6423.2011.02.002
    CAMPBELL F. Manufacturing processes for advanced composites[M]. Amsterdam: Elsevier, 2003.
    MAZUMDAR S. Composites manufacturing: Materials, product, and process engineering[M]. New York: CRC press, 2001.
    MALLICK P K. Fiber-reinforced composites: Materials, manufacturing, and design[M]. Boca Raton: CRC press, 2007.
    MORI K, MAENO T, NAKAGAWA Y. Dieless forming of carbon fibre reinforced plastic parts using 3D printer[J]. Procedia Engineering,2014,81:1595-1600. doi: 10.1016/j.proeng.2014.10.196
    MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    ATTARAN M. The rise of 3D printing: The advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons,2017,60(5):677-688. doi: 10.1016/j.bushor.2017.05.011
    COLLINS R. 3D printing composites 2020-2030: Technology and market analysis current and future technologies, and market forecasts[R]. Cambridge: IDTechEx Res, 2020: 122.
    HOFSTÄTTER T, PEDERSEN D B, TOSELLO G, et al. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies[J]. Journal of Reinforced Plastics and Composites,2017,36(15):1061-1073. doi: 10.1177/0731684417695648
    WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
    BETTINI P, ALITTA G, SALA G, et al. Fused deposition technique for continuous fiber reinforced thermoplastic[J]. Journal of Materials Engineering and Performance,2017,26(2):843-848. doi: 10.1007/s11665-016-2459-8
    LI J, DURANDET Y, HUANG X, et al. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J]. Journal of Materials Science & Technology,2022,119:219-244.
    PANDELIDI C, BATEMAN S, PIEGERT S, et al. The technology of continuous fibre-reinforced polymers: A review on extrusion additive manufacturing methods[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3057-3077.
    ZHANG H, HUANG T, JIANG Q, et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: A review[J]. Journal of Materials Science,2021,56(23):12999-13022. doi: 10.1007/s10853-021-06111-w
    ZHUO P, LI S, ASHCROFT I A, et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook[J]. Composites Part B: Engineering,2021,224:109143. doi: 10.1016/j.compositesb.2021.109143
    MASHAYEKHI F, BARDON J, BERTHÉ V, et al. Fused filament fabrication of polymers and continuous fiber-reinforced polymer composites: Advances in structure optimization and health monitoring[J]. Polymers,2021,13(5):789. doi: 10.3390/polym13050789
    KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476. doi: 10.1016/j.compstruct.2019.111476
    TIAN X, TODOROKI A, LIU T, et al. 3D printing of continuous fiber reinforced polymer composites: Development, application, and prospective[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,2022,1(1):100016. doi: 10.1016/j.cjmeam.2022.100016
    SAFARI F, KAMI A, ABEDINI V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties[J]. Polymers and Polymer Composites,2022,30:09673911. doi: 10.1177/09673911221098734
    WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science,2020,111:100638. doi: 10.1016/j.pmatsci.2020.100638
    SHANMUGAM V, RAJENDRAN D J J, BABU K, et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing[J]. Polymer Testing,2021,93:106925. doi: 10.1016/j.polymertesting.2020.106925
    BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing,2018,22:176-186. doi: 10.1016/j.addma.2018.04.039
    RÁTHY I, KUKI Á, BORDA J, et al. Preparation and characterization of poly (vinyl chloride)-continuous carbon fiber composites[J]. Journal of Applied Polymer Science,2012,124(1):190-194. doi: 10.1002/app.33617
    DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004
    SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:114-121. doi: 10.1016/j.compositesa.2018.07.029
    DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures,2019,212:381-388. doi: 10.1016/j.compstruct.2019.01.050
    NARANJO-LOZADA J, AHUETT-GARZA H, ORTA-CASTAÑÓN P, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing[J]. Additive Manufacturing,2019,26:227-241. doi: 10.1016/j.addma.2018.12.020
    CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054
    RAHIM T N A T, ABDULLAH A M, AKIL H M, et al. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling[J]. Express Polymer Letters,2017,11(12):963-982. doi: 10.3144/expresspolymlett.2017.92
    CHACÓN J M, CAMINERO M A, GARCÍA-PLAZA E, et al. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection[J]. Materials & Design,2017,124:143-157.
    ALAIMO G, MARCONI S, COSTATO L, et al. Influence of meso-structure and chemical composition on FDM 3D-printed parts[J]. Composites Part B: Engineering,2017,113:371-380. doi: 10.1016/j.compositesb.2017.01.019
    ZHAO F, LI D, JIN Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications[J]. Materials,2018,11(2):288. doi: 10.3390/ma11020288
    RINALDI M, GHIDINI T, CECCHINI F, et al. Additive layer manufacturing of poly(ether ether ketone) via FDM[J]. Composites Part B: Engineering,2018,145:162-172. doi: 10.1016/j.compositesb.2018.03.029
    LEE C U, VANDENBRANDE J, GOETZ A E, et al. Room temperature extrusion 3D printing of polyether ether ketone using a stimuli-responsive binder[J]. Additive Manufacturing,2019,28:430-438. doi: 10.1016/j.addma.2019.05.008
    GEBISA A W, LEMU H G. Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment[J]. Materials,2018,11(4):500. doi: 10.3390/ma11040500
    TAYLOR G, WANG X, MASON L, et al. Flexural behavior of additively manufactured Ultem 1010: Experiment and simulation[J]. Rapid Prototyping Journal,2018,24(6):1003-1011. doi: 10.1108/RPJ-02-2018-0037
    WU H, SULKIS M, DRIVER J, et al. Multi-functional ULTEM™ 1010 composite filaments for additive manufacturing using fused filament fabrication (FFF)[J]. Additive Manufacturing,2018,24:298-306. doi: 10.1016/j.addma.2018.10.014
    KOTLINSK J. Mechanical properties of commercial rapid prototyping materials[J]. Rapid Prototyping Journal,2014,20(6):499-510. doi: 10.1108/RPJ-06-2012-0052
    LANZOTTI A, GRASSO M, STAIANO G, et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer[J]. Rapid Prototyping Journal,2015,21(5):604-617. doi: 10.1108/RPJ-09-2014-0135
    LI W, SANG L, JIAN X, et al. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF[J]. International Journal of Adhesion and Adhesives,2020,100:102614. doi: 10.1016/j.ijadhadh.2020.102614
    KARGER-KOCSIS J, MAHMOOD H, PEGORETTI A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science,2015,73:1-43. doi: 10.1016/j.pmatsci.2015.02.003
    YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098
    ZHANG Y C, WANG X. Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites[J]. International Journal of Solids and Structures,2005,42(20):5399-5412. doi: 10.1016/j.ijsolstr.2005.02.038
    GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271. doi: 10.1002/admt.201800271
    ZHAO H, LIU X, ZHAO W, et al. An overview of research on FDM 3D printing process of continuous fiber reinforced composites[C]//International Conference on Advanced Algorithms and Control Engineering, ICAACE 2019—Electronics Engineering and Process Control. Guilin: IOP Publishing, 2019, 1213(5): 052037.
    TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal,2014,20(3):192-204. doi: 10.1108/RPJ-01-2013-0012
    AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. An innovative design approach in three-dimensional printing of continuous fiber-reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2020,234(1-2):243-259. doi: 10.1177/0954405419843780
    MATSCHINSKI A. Integration of continuous fibers in additive manufacturing processes[C]//Virtual Symposium on AFP and AM. Canberra: Technical University of Munich and Australian National University, 2020.
    KÖHLER T, RÖDING T, GRIES T, et al. An overview of impregnation methods for carbon fibre reinforced thermoplastics[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2017, 742: 473-481.
    CARNEVALE P. Fibre-matrix interfaces in thermoplastic composites: A meso-level approach[D]. Holland: Technische Universiteit Delft, 2014.
    WANG F, WANG G, NING F, et al. Fiber-matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites[J]. Additive Manufacturing,2021,37:101661. doi: 10.1016/j.addma.2020.101661
    TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    OMURO R, MATSUZAKI R, HIRANO Y, et al. Mechanical testing of a 3D-printed continuous carbon fiber reinforced polylactic acid composite by in-nozzle impregnation fused-deposition modelling[J]. SAMPE Journal,2018,54:12-20.
    JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. doi: 10.1016/j.compstruct.2017.11.052
    GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89. doi: 10.1016/j.matdes.2017.10.021
    HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering,2019,175:107147. doi: 10.1016/j.compositesb.2019.107147
    UŞUN A, GÜMRÜK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112
    LIU T, TIAN X, ZHANG Y, et al. High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105770. doi: 10.1016/j.compositesa.2020.105770
    MING Y, ZHANG S, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing,2020,33:101184. doi: 10.1016/j.addma.2020.101184
    MING Y, XIN Z, ZHANG J, et al. Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling[J]. Composites Communications,2020,21:100401. doi: 10.1016/j.coco.2020.100401
    LUO H, TAN Y, ZHANG F, et al. Selectively enhanced 3D printing process and performance analysis of continuous carbon fiber composite material[J]. Materials,2019,12(21):3529. doi: 10.3390/ma12213529
    LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001
    WANG Y, KONG D, ZHANG Q, et al. Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling[J]. Journal of Reinforced Plastics and Composites,2021,40(17-18):686-698. doi: 10.1177/0731684421998017
    BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing,2018,21:1-16. doi: 10.1016/j.addma.2018.01.002
    BRENKEN B, FAVALORO A, BAROCIO E, et al. Development of a model to predict temperature history and crystallization behavior of 3D printed parts made from fiber-reinforced thermoplastic polymers[C]//SAMPE Conference Proceedings. Long Beach: Society for the Advancement of Material and Process Engineering, 2016: 23-26.
    ZHOU Y, NYBERG T, XIONG G, et al. Temperature analysis in the fused deposition modeling process[C]//2016 3rd International Conference on Information Science and Control Engineering (ICISCE). Beijing: IEEE, 2016: 678-682.
    COSTA S F, DUARTE F M, COVAS J A. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process[J]. Virtual and Physical Prototyping,2015,10(1):35-46. doi: 10.1080/17452759.2014.984042
    LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:130-138. doi: 10.1016/j.compositesa.2019.03.020
    LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. doi: 10.1557/jmr.2018.131
    LUO M, TIAN X, SHANG J, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105812. doi: 10.1016/j.compositesa.2020.105812
    NAKAGAWA Y, MORI K, YOSHINO M. Laser-assisted 3D printing of carbon fibre reinforced plastic parts[J]. Journal of Manufacturing Processes,2022,73:375-384. doi: 10.1016/j.jmapro.2021.11.025
    LI N, LINK G, JELONNEK J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics[J]. CIRP Annals,2020,69(1):221-224. doi: 10.1016/j.cirp.2020.04.057
    LI N, LINK G, JELONNEK J. 3D microwave printing temperature control of continuous carbon fiber reinforced composites[J]. Composites Science and Technology,2020,187:107939. doi: 10.1016/j.compscitech.2019.107939
    UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985
    KISHORE V, AJINJERU C, NYCZ A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components[J]. Additive Manufacturing,2017,14:7-12. doi: 10.1016/j.addma.2016.11.008
    PARTAIN S C. Fused deposition modeling with localized pre-deposition heating using forced air[D]. Bozeman: Montana State University-Bozeman, College of Engineering, 2007.
    SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer,2014,55(23):5969-5979. doi: 10.1016/j.polymer.2014.07.054
    CHEN K, YU L, CUI Y, et al. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717
    CHANG B, PARANDOUSH P, LI X, et al. Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing[J]. Polymer Composites,2020,41(11):4706-4715. doi: 10.1002/pc.25744
    CHU Q, LI Y, XIAO J, et al. Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration-assisted automated fiber placement[J]. Journal of Thermoplastic Composite Materials,2018,31(3):339-358. doi: 10.1177/0892705717697781
    LIU S J, CHANG I T, HUNG S W. Factors affecting the joint strength of ultrasonically welded polypropylene composites[J]. Polymer Composites,2001,22(1):132-141. doi: 10.1002/pc.10525
    ANITHA R, ARUNACHALAM S, RADHAKRISHNAN P. Critical parameters influencing the quality of prototypes in fused deposition modelling[J]. Journal of Materials Processing Technology,2001,118(1-3):385-388. doi: 10.1016/S0924-0136(01)00980-3
    NANCHARAIAH T, RAJU D R, RAJU V R. An experimental investigation on surface quality and dimensional accuracy of FDM components[J]. International Journal on Emerging Technologies,2010,1(2):106-111.
    CARNEIRO O S, SILVA A F, GOMES R. Fused deposition modeling with polypropylene[J]. Materials & Design,2015,83:768-776.
    CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science,2018,53(3):1887-1898. doi: 10.1007/s10853-017-1624-2
    RANKOUHI B, JAVADPOUR S, DELFANIAN F, et al. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation[J]. Journal of Failure Analysis and Prevention,2016,16(3):467-481. doi: 10.1007/s11668-016-0113-2
    SHUBHAM P, SIKIDAR A, CHAND T. The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2016, 706: 63-67.
    CHACÓN J M, CAMINERO M A, NÚÑEZ P J, et al. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology,2019,181:107688. doi: 10.1016/j.compscitech.2019.107688
    SANEI S H R, POPESCU D. 3D-printed carbon fiber reinforced polymer composites: A systematic review[J]. Journal of Composites Science,2020,4(3):98. doi: 10.3390/jcs4030098
    ARAYA-CALVO M, LÓPEZ-GÓMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164. doi: 10.1016/j.addma.2018.05.007
    VAN DER KLIFT F, KOGA Y, TODOROKI A, et al. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials,2016,6(1):18. doi: 10.4236/ojcm.2016.61003
    PYL L, KALTEREMIDOU K A, VAN HEMELRIJCK D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites[J]. Polymer Testing,2018,71:318-328. doi: 10.1016/j.polymertesting.2018.09.022
    WANG K, LI S, RAO Y, et al. Flexure behaviors of ABS-based composites containing carbon and Kevlar fibers by material extrusion 3D printing[J]. Polymers,2019,11(11):1878. doi: 10.3390/polym11111878
    DING Q, LI X, ZHANG D, et al. Anisotropy of poly(lactic acid)/carbon fiber composites prepared by fused deposition modeling[J]. Journal of Applied Polymer Science,2020,137(23):48786. doi: 10.1002/app.48786
    SANEI S H R, ARNDT A, DOLES R. Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites[J]. Journal of Composite Materials,2020,54(20):2687-2695. doi: 10.1177/0021998320902510
    SUGIYAMA K, MATSUZAKI R, MALAKHOV A V, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology,2020,186:107905. doi: 10.1016/j.compscitech.2019.107905
    HOU Z, TIAN X, ZHANG J, et al. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites[J]. Composites Science and Technology,2021,201:108502. doi: 10.1016/j.compscitech.2020.108502
    SHANG J, TIAN X, LUO M, et al. Controllable inter-line bonding performance and fracture patterns of continuous fiber reinforced composites by sinusoidal-path 3D printing[J]. Composites Science and Technology,2020,192:108096. doi: 10.1016/j.compscitech.2020.108096
    WANG T, LI N, LINK G, et al. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics[J]. Composites Part A: Applied Science and Manufacturing,2021,140:106181. doi: 10.1016/j.compositesa.2020.106181
    PAPAPETROU V S, PATEL C, TAMIJANI A Y. Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites[J]. Composites Part B: Engineering,2020,183:107681. doi: 10.1016/j.compositesb.2019.107681
    FERNANDES R R, VAN DE WERKEN N, KOIRALA P, et al. Experimental investigation of additively manufactured continuous fiber reinforced composite parts with optimized topology and fiber paths[J]. Additive Manufacturing,2021,44:102056. doi: 10.1016/j.addma.2021.102056
    VAN DE WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B: Engineering,2019,160:684-692. doi: 10.1016/j.compositesb.2018.12.094
    LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications,2021,27:100907. doi: 10.1016/j.coco.2021.100907
    CHENG P, PENG Y, LI S, et al. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook[J]. Composites Part B: Engineering,2023,250:110450. doi: 10.1016/j.compositesb.2022.110450
    HUANG Y, TIAN X, ZHENG Z, et al. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure[J]. Composite Structures,2022,285:115241. doi: 10.1016/j.compstruct.2022.115241
    EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing,2017,18:48-57. doi: 10.1016/j.addma.2017.08.013
    WANG Z, LUAN C, LIAO G, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B: Engineering,2019,176:107215. doi: 10.1016/j.compositesb.2019.107215
    LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design,2018,137:235-244.
    LI N, LINK G, MA J, et al. LiDAR based multi-robot cooperation for the 3D printing of continuous carbon fiber reinforced composite structures[C]//12th International Conference on Manufacturing Research (ICMR2014). Amsterdam: IOS Press, 2021: 125-132.
    CHABAUD G, CASTRO M, DENOUAL C, et al. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications[J]. Additive Manufacturing,2019,26:94-105. doi: 10.1016/j.addma.2019.01.005
    秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):196-204.

    QIN Ruosen, SUN Shouzheng, HAN Zhenyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):196-204(in Chinese).
    陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):167-191.

    CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):167-191(in Chinese).
    田小永. 纤维增强树脂基复合材料增材制造技术[M]. 北京: 国防工业出版社, 2021: 86-119.

    TIAN Xiaoyong. Additive manufacturing technologies for fiber reinforced polymer matrix composites[M]. Beijing: National Defense Industry Press, 2021: 86-119(in Chinese).
    夏正付. 纤维增强复合材料增材制造技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    XIA Zhengfu. Study on additive manufacturing of fiber reinforced thermo-plastic composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (263) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint