Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Xiaohan, GUO Lichuang, HUANG Xiangyu, et al. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001
Citation: CHEN Xiaohan, GUO Lichuang, HUANG Xiangyu, et al. Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 151-159. doi: 10.13801/j.cnki.fhclxb.20220225.001

Thermal reaction characteristics of large tow PAN precursors and their evolution of structure and properties during continuous pre-oxidation

doi: 10.13801/j.cnki.fhclxb.20220225.001
Funds:  Supported by Changzhou Sci & Tech Program (CJ20210029)
  • Received Date: 2021-12-17
  • Accepted Date: 2022-02-11
  • Rev Recd Date: 2022-01-22
  • Available Online: 2022-02-28
  • Publish Date: 2023-01-15
  • Thermal stress, DSC, FTIR, element analysis (EA), XRD, mechanical properties and density were used to analyze the thermal reaction characteristics of large tow polyacrylonitrile (PAN) precursors (48K) in combination with small tow PAN precursors (24K). The large tow carbon fibers were prepared by 50 min continuous pre-oxidation method, in which the evolution of structure and properties were studied. The results show that the thermal stress of large tow PAN precursors is 1.13-1.43 times of small tow PAN precursors, and the starting temperature is lower. The difference of thermal stress reaches maximum at 250℃ and the corresponding density of large tow fibers is 1.316 g/cm3. The crystal regions of PAN precursors transform into amorphous regions rapidly at the initial stage of reaction, and the grain size of the crystal regions increases first and then decreases. The monofilament tensile strength and modulus of large tow carbon fibers prepared by 50 min continuous pre-oxidation are 4240 MPa and 244 GPa, respectively, which are at the same level as those commercial foreign large tow carbon fibers.

     

  • loading
  • [1]
    JOAQUIM J M. New, innovative 80K tow carbon fiber precursor for non-aerospace use to hit the market in mid-2020[J]. Reinforced Plastics,2020,64(3):145-148. doi: 10.1016/j.repl.2019.10.005
    [2]
    吉用秋, 俞成涛, 邱睿, 等. 大丝束碳纤维产业发展现状及面临的问题[J]. 合成纤维工业, 2019, 42(3):64-68. doi: 10.3969/j.issn.1001-0041.2019.03.015

    JI Yongqiu, YU Chengtao, QIU Rui, et al. Development status and problems of large tow carbon fiber industry[J]. China Synthetic Fiber Industry,2019,42(3):64-68(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.03.015
    [3]
    徐爱武, 梁燕, 蒋玲玲. 大丝束碳纤维发展现状及我国技术瓶颈和发展建议[J]. 合成纤维, 2020, 49(6):19-23.

    XU Aiwu, LIANG Yan, JIANG Lingling. Development status of large tow carbon fiber and its technical bottleneck and development suggestions in China[J]. Synthetic Fiber in China,2020,49(6):19-23(in Chinese).
    [4]
    HIREMATH N, YOUNG S, GHOSSEIN H, et al. Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications[J]. Composites Part B: Engineering,2020,198:108156. doi: 10.1016/j.compositesb.2020.108156
    [5]
    BÜCHELER D, KAISER A, HENNING F. Using thermogravimetric analysis to determine carbon fiber weight percentage of fiber-reinforced plastics[J]. Composites Part B: Engineering,2016,106:218-223. doi: 10.1016/j.compositesb.2016.09.028
    [6]
    JANG D, LEE M E, CHOI J, et al. Strategies for the production of PAN-based carbon fibers with high tensile strength[J]. Carbon,2022,186:644-677. doi: 10.1016/j.carbon.2021.10.061
    [7]
    HAO J J, LU C X, LI D H. A comparative analysis of polyacrylonitrile-based carbon fibers: (II) Relationship between the microstructures and properties[J]. New Carbon Materials,2020,35(6):802-809. doi: 10.1016/S1872-5805(20)60528-5
    [8]
    RUAN R R, CAO W Y, XU L H. Quantitative characterization of physical structure on carbon fiber surface based on image technique[J]. Materials & Design,2020,185:108225. doi: 10.1016/j.matdes.2019.108225
    [9]
    LU J S, LI W W, KANG H L, et al. Microstructure and properties of polyacrylonitrile based carbon fibers[J]. Polymer Testing,2020,81:106267. doi: 10.1016/j.polymertesting.2019.106267
    [10]
    GUTMANN P, MOOSBURGER-WILL J, KURT S, et al. Carbonization of polyacrylonitrile-based fibers under defined tensile load: Influence on shrinkage behavior, microstructure, and mechanical properties[J]. Polymer Degradation and Stability,2019,163:174-184. doi: 10.1016/j.polymdegradstab.2019.03.007
    [11]
    候传礼. 大丝束碳纤维应用及展纱设备研究进展[J]. 纤维复合材料, 2015, 32(1):51-53. doi: 10.3969/j.issn.1003-6423.2015.01.012

    HOU Chuanli. Research progress of large tow carbon fiber application and yarn spreading equipment[J]. Fiber Composites,2015,32(1):51-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2015.01.012
    [12]
    黄明, 祖韵秋, 高亢, 等. 大丝束CF/EP汽车地板VARTM模拟与高温力学性能[J]. 化工进展, 2022, 41(5): 2546-2554.

    HUANG Ming, ZU Yunqiu, GAO Kang, et al. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2546-2554(in Chinese).
    [13]
    ZHANG X X, QI Y, YANG J X, et al. Insight into stabilization behaviors of Lignin/PAN-derived electrospun precursor fibers[J]. Polymer Degradation and Stability,2021,191:109680. doi: 10.1016/j.polymdegradstab.2021.109680
    [14]
    LIU W H, SHEN R F, LIU S M, et al. Free radical evolution and decay of PAN nano-fibers formed by irradiation and thermal stabilization[J]. Polymer Degradation and Stability,2021,188:109570. doi: 10.1016/j.polymdegradstab.2021.109570
    [15]
    KHAYYAM H, JAZAR R, NUNNA S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modelling[J]. Progress in Materials Science,2020,107:100575. doi: 10.1016/j.pmatsci.2019.100575
    [16]
    BANAIE K A, MIRJALILI M, ESLAMI-FARSANI R. The study of the correlation between ascending and descending rates of the imposed specific stress and transposition of chemical reactions during PAN precursor fibers stabilization[J]. Polymer Degradation and Stability,2018,156:234-244. doi: 10.1016/j.polymdegradstab.2018.09.006
    [17]
    连峰, 杨平, 王芬, 等. 基于低环化反应活化能的PAN纤维快速预氧化研究[J]. 高科技纤维与应用, 2019, 44(5):23-28. doi: 10.3969/j.issn.1007-9815.2019.05.002

    LIAN Feng, YANG Ping, WANG Fen, et al. Study on rapid pre-oxidation of PAN fibers based on low activation energy of cyclization[J]. Hi-Tech Fiber and Application,2019,44(5):23-28(in Chinese). doi: 10.3969/j.issn.1007-9815.2019.05.002
    [18]
    李常清, 徐樑华, 齐帅, 等. PAN原丝高效预氧化研究[J]. 化工新型材料, 2017, 45(1):71-73.

    LI Changqing, XU Lianghua, QI Shuai, et al. Study on high efficiency stabilization of PAN precursor[J]. New Chemical Materials,2017,45(1):71-73(in Chinese).
    [19]
    CHOI D, KIL H, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon,2019,142:610-649. doi: 10.1016/j.carbon.2018.10.028
    [20]
    KIM S, LEE S, PARK S, et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers[J]. Carbon,2015,94:412-416. doi: 10.1016/j.carbon.2015.07.012
    [21]
    中国国家标准化管理委员会. 碳纤维—单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Carbon fibre—Determination of the tensile properties of single-filament specimens: GB/T 31290—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [22]
    American Society for Testing and Materials. Standard test method for density of plastics by the density-gradient technique: ASTM D1505—2018[S]. West Conshohocken: ASTM International, 2018.
    [23]
    CHEN L, SHEN Z G, LIU J, et al. Effects of oxygen on the structural evolution of polyacrylonitrile fibers during rapid thermal treatment[J]. RSC Advances,2020,10(11):6356-6361. doi: 10.1039/C9RA08881D
    [24]
    LIU J, LIAN F, MA Z K, et al. Effects of deformation-induced orientation on cyclization and oxidation of polyacrylonitrile fibers during stabilization process[J]. Chinese Journal of Polymer Science,2012,30(6):786-795. doi: 10.1007/s10118-012-1165-8
    [25]
    刘杰, 禹化果, 薛岩, 等. 聚丙烯腈纤维热应力与碳纤维结构及性能的关联性[J]. 复合材料学报, 2014, 31(1):66-72. doi: 10.3969/j.issn.1000-3851.2014.01.009

    LIU Jie, YU Huaguo, XUE Yan, et al. Relationship between the thermal stress of polyacrylonitrile fibers and the structure and properties of resulting carbon fibers[J]. Acta Materiae Compositae Sinica,2014,31(1):66-72(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.009
    [26]
    FITZER E, MÜLLER D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon,1975,13(1):63-69. doi: 10.1016/0008-6223(75)90259-6
    [27]
    BADII K, CHURCH J, GOLKARNARENJI G, et al. Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model[J]. Polymer Degradation and Stability,2016,131:53-61. doi: 10.1016/j.polymdegradstab.2016.06.019
    [28]
    刘杰, 王雷, 张旺玺, 等. 热稳定化过程中PAN纤维热应力与热化学反应的关联性[J]. 新型炭材料, 2005, 20(4):343-349. doi: 10.3321/j.issn:1007-8827.2005.04.010

    LIU Jie, WANG Lei, ZHANG Wangxi, et al. Relationships between thermal stress and the thermo-chemical reaction of PAN fibers during thermal stabilization[J]. New Carbon Materials,2005,20(4):343-349(in Chinese). doi: 10.3321/j.issn:1007-8827.2005.04.010
    [29]
    XUE Y, LIU J, LIANG J Y. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization[J]. Polymer Degradation and Stability,2013,98(1):219-229. doi: 10.1016/j.polymdegradstab.2012.10.018
    [30]
    LIAN F, LIU J, MA Z K, et al. Stretching-induced deformation of polyacrylonitrile chains both in quasicrystals and in amorphous regions during the in situ thermal modification of fibers prior to oxidative stabilization[J]. Carbon,2012,50(2):488-499. doi: 10.1016/j.carbon.2011.09.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (1033) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return