Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001
Citation: SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1951-1965. doi: 10.13801/j.cnki.fhclxb.20220704.001

Research progress of in-situ fibrous composite foamed material

doi: 10.13801/j.cnki.fhclxb.20220704.001
Funds:  National Natural Science Foundation of China (U1909219)
  • Received Date: 2022-05-06
  • Accepted Date: 2022-06-18
  • Rev Recd Date: 2022-06-04
  • Available Online: 2022-07-05
  • Publish Date: 2023-04-15
  • In-situ fibrous composite foamed material is one type of foams, which is based on in-situ micro fibrillation (IMF) composites and microcellular foaming technology. In addition to the performance of traditional foamed materials such as light weight, shock absorption, insulation, noise reduction, etc., the presence of fiber network structure constructed in IMF composite can significantly improve the microcellular foaming ability of the matrix. Leading to the in-situ fibrous composite foamed material is a kind of new foam with high strength and functionality. This paper first summarized the fabrication process of IMF composites and regulatory factors. The influence of IMF network structure on the crystallization and rheological behaviors were emphatically analyzed. Then reviewed the preparation and pore structure regulation methods of in-situ fibrous composite foamed materials for various IMF composites and microcellular foaming process. The mechanism of strong mechanical properties and application in the field of heat insulation and oil-water separation were then elaborated and listed. Finally, looking forward to the future research directions of in-situ fibrous composite foamed materials.

     

  • loading
  • [1]
    ALTAN M. Thermoplastic foams: Processing, manufacturing, and characterization[M]. Boca Raton: CRC Press Inc, 2018: 104-161.
    [2]
    HU D D, GAO X L, QIANG W, et al. Formation mechanism of bi-modal cell structure polystyrene foams by synergistic effect of CO2-philic additive and co-blowing agent[J]. Journal of Supercritical Fluids,2022,181:105498. doi: 10.1016/j.supflu.2021.105498
    [3]
    JIN F L, ZHAO M, PARK M, et al. Recent trends of foaming in polymer processing: A review[J]. Polymers,2019,11(6):953. doi: 10.3390/polym11060953
    [4]
    SOH S H, LEE L Y. Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques[J]. Pharmaceutics,2019,11(1):21. doi: 10.3390/pharmaceutics11010021
    [5]
    DUGAD R, RADHAKRISHNA G, GANDHI A. Recent advancements in manufacturing technologies of microcellular polymers: A review[J]. Journal of Polymer Research,2020,27(7):182-204. doi: 10.1007/s10965-020-02157-7
    [6]
    WANG G, ZHAO G, ZHANG L, et al. Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding[J]. Chemical Engineering Journal,2018,350:1-11. doi: 10.1016/j.cej.2018.05.161
    [7]
    ZHAO J, ZHAO Q, WANG C, et al. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites[J]. Materials & Design,2017,131:1-11.
    [8]
    FU L, SHI Q, JI Y, et al. Improved cell nucleating effect of partially melted crystal structure to enhance the microcellular foaming and impact properties of isotactic polypropylene[J]. Journal of Supercritical Fluids,2020,160:104794. doi: 10.1016/j.supflu.2020.104794
    [9]
    WANG G, ZHAO G, DONG G, et al. Lightweight and strong microcellular injection molded PP/talc nanocomposite[J]. Composites Science and Technology,2018,168:38-46. doi: 10.1016/j.compscitech.2018.09.009
    [10]
    ZHAO J, ZHAO Q, WANG L, et al. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers[J]. European Polymer Journal,2018,98:1-10. doi: 10.1016/j.eurpolymj.2017.11.001
    [11]
    ZHAO X P, ZHANG D F, YU S T, et al. Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends[J]. e-Polymers,2021,21(1):793-810. doi: 10.1515/epoly-2021-0072
    [12]
    MARTINEZ VILLADIEGO K, ARIAS TAPIA M J, USECHE J, et al. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: A review[J]. Journal of Polymers and the Environment,2022,30(1):75-91. doi: 10.1007/s10924-021-02207-1
    [13]
    KUZMANOVIC M, DELVA L, CARDON L, et al. The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites[J]. Polymers,2016,8(10):355-371. doi: 10.3390/polym8100355
    [14]
    XIA X, YANG W, HE S, et al. Formation of various crystalline structures in a polypropylene/polycarbonate in situ microfibrillar blend during the melt second flow[J]. Physical Chemistry Chemical Physics,2016,18(20):14030-14039. doi: 10.1039/C6CP01426G
    [15]
    CHEN Y, ZHONG G, LI Z M, et al. Microfibril reinforced polymer-polymer composites via hot stretching: Preparation, structure and properties[M]. Berlin: Springer Press Inc, 2012: 401-436.
    [16]
    李忠明, 杨鸣波, 卢忠远, 等. 热拉伸比对PET/PE原位微纤化复合材料形态和拉伸性能的影响[J]. 复合材料学报, 2005, 22(3):9-15. doi: 10.3321/j.issn:1000-3851.2005.03.002

    LI Zhongming, YANG Mingbo, LU Zhongyuan, et al. Influence of hot stretch ratio on morphology and tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfibrillar composite[J]. Acta Materiae Compositae Sinica,2005,22(3):9-15(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.002
    [17]
    徐鸿升, 李忠明, 王松杰, 等. PE-HD/PET原位微纤化共混物的动态流变性能研究-微纤含量的影响[J]. 中国塑料, 2006, 20(6):18-21. doi: 10.3321/j.issn:1001-9278.2006.06.004

    XU Hongsheng, LI Zhongming, WANG Songjie, et al. Dynamic rheological behaviors of PE-HD/PET microfibrillar reinforced composites: The influences of microfibril’s concentration[J]. China Plastics,2006,20(6):18-21(in Chinese). doi: 10.3321/j.issn:1001-9278.2006.06.004
    [18]
    YOKOHARA T, NOBUKAWA S, YAMAGUCHI M, et al. Rheological properties of polymer composites with flexible fine fibers[J]. Journal of Rheology,2011,55(6):1205-1218. doi: 10.1122/1.3626414
    [19]
    WU G J, XU Y X, CHEN J, et al. In situ fibrillation-reinforced polypropylene-based multi-component foams[J]. Polymers for Advanced Technologies,2021,32(10):4052-4060. doi: 10.1002/pat.5411
    [20]
    KAKROODI A R, KAZEMI Y, NOFAR M, et al. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films[J]. Chemical Engineering Journal,2017,308:772-782. doi: 10.1016/j.cej.2016.09.130
    [21]
    RIZVI A, CHU R, LEE J H, et al. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene[J]. ACS Applied Materials & Interfaces,2014,6(23):21131-21140.
    [22]
    KAKROODI A R, KAZEMI Y, DING W, et al. Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability[J]. Biomacromolecules,2015,16(12):3925-3935. doi: 10.1021/acs.biomac.5b01253
    [23]
    KUZMANOVIC M, DELVA L, CARDON L, et al. Relationship between the processing, structure, and properties of microfibrillar composites[J]. Advanced Materials,2020,32(52):2003938. doi: 10.1002/adma.202003938
    [24]
    KISS G. In situ composites: Blends of isotropic polymers and thermotropic liquid crystalline polymers[J]. Polymer Engineering and Science,1987,27(6):410-423. doi: 10.1002/pen.760270606
    [25]
    朱钰婷, 谷琳, 何家隆, 等. 微纳层叠共挤PP/PA6/CNTs原位微纤复合膜的制备及性能研究[J]. 中国塑料, 2021, 35(10):1-7. doi: 10.19491/j.issn.1001-9278.2021.10.001

    ZHU Yuting, GU Lin, HE Jialong, et al. Preparation and properties of PP/PA6/CNTs in-situ microfiber composite films based on microlayer coextrusion[J]. China Plastics,2021,35(10):1-7(in Chinese). doi: 10.19491/j.issn.1001-9278.2021.10.001
    [26]
    SHAHIN A, SHAAYEGAN V, LEE P C, et al. In situ visualization for control of nano-fibrillation based on spunbond processing using a polypropylene/polyethylene terephthalate system[J]. International Polymer Processing,2021,36(3):332-344. doi: 10.1515/ipp-2020-4072
    [27]
    SHAHNOOSHI M, JAVADI A, NAZOCKDAST H, et al. Development of in situ nanofibrillar poly(lactic acid)/poly(butylene terephthalate) composites: Non-isothermal crystallization and crystal morphology[J]. European Polymer Journal,2020,125:109489. doi: 10.1016/j.eurpolymj.2020.109489
    [28]
    张婷婷, 董珈豪, 王蒙, 等. 分散相含量对乙烯-醋酸乙烯酯共聚物/聚丙烯原位微纤复合材料微纤形态、结晶行为及流变和力学性能的影响[J]. 材料导报, 2018, 32(12):2032-2037. doi: 10.11896/j.issn.1005-023X.2018.12.017

    ZHANG Tingting, DONG Jiahao, WANG Meng, et al. Dispersed phase content of ethylene-vinyl acetate copolymer/polypropylene (EVA/PP) in-situ microfibrillar composites (MFCs): Influences to microfiber morphology, crystallization behavior, rheological and mechanical properties[J]. Materials Review,2018,32(12):2032-2037(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.12.017
    [29]
    LI X, HUANG Y, XIN C, et al. Effect of dispersed phase on the morphology of in situ microfibrils and the viscoelastic properties of its composite via direct extrusion[J]. Journal of Applied Polymer Science,2018,135(21):46286. doi: 10.1002/app.46286
    [30]
    SU J J, CUI C F, LIN Y, et al. In situ microfibril structure in incompatible isotactic polypropylene/polylactic acid blends controlled by viscosity ratio[J]. Polymer Engineering and Science,2020,60(4):832-840. doi: 10.1002/pen.25342
    [31]
    ZHAO C, MARK L, ALSHRAH M, et al. Challenge in manufacturing nanofibril composites with low matrix viscosity: Effects of matrix viscosity and fibril content[J]. European Polymer Journal,2019,121:109310. doi: 10.1016/j.eurpolymj.2019.109310
    [32]
    YI X, WANG Y, XU L, et al. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio[J]. European Polymer Journal,2010,46(4):719-730. doi: 10.1016/j.eurpolymj.2009.12.027
    [33]
    HUANG Y, HE Y, JIANG L L, et al. Effect of fibrillar morphology on the rheological properties of polypropylene/poly(hexamethylene adipamide) in situ microfibrillar composites[J]. Acta Polymerica Sinica,2017(5):867-874.
    [34]
    WANG D, LI F Q, WANG X H, et al. Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts[J]. Journal of Zhejiang University-Science A,2020,21(3):229-239. doi: 10.1631/jzus.A1900530
    [35]
    FAKIROV S, BHATTACHARYYA D, LIN R J T, et al. Contribution of coalescence to microfibril formation in polymer blends during cold drawing[J]. Journal of Macromolecular Science Part B-Physics,2007,46(1):183-193. doi: 10.1080/00222340601044375
    [36]
    JANG J U, YOUN S J, KIM S Y, et al. Effect of polypropylene-grafted-maleic anhydride content on physical properties of carbon fiber reinforced polypropylene composites[J]. Functional Composites and Structures,2020,2(4):045008. doi: 10.1088/2631-6331/abd374
    [37]
    LI Z M, YANG M B, XIE B H, et al. In-situ microfiber reinforced composite based on PET and PE via slit die extrusion and hot stretching: Influences of hot stretching ratio on morphology and tensile properties at a fixed composition[J]. Polymer Engineering & Science,2003,43(3):615-628.
    [38]
    DENCHEV Z, DENCHEVA N. Manufacturing and properties of aramid reinforced composites[M]. Cambridge: Woodhead Publish, 2012: 251-280.
    [39]
    JAYANARAYANAN K, JOSE T, THOMAS S, et al. Effect of draw ratio on the microstructure, thermal, tensile and dynamic rheological properties of insitu microfibrillar composites[J]. European Polymer Journal,2009,45(6):1738-1747. doi: 10.1016/j.eurpolymj.2009.02.024
    [40]
    KUZMANOVIC M, DELVA L, MI D, et al. Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA[J]. Polymers,2018,10(3):291. doi: 10.3390/polym10030291
    [41]
    LA M, CERAULO F, GIACCHI G, et al. Effect of a compatibilizer on the morphology and properties of polypropylene/polyethylentherephthalate spun fibers[J]. Polymers,2017,9(2):47. doi: 10.3390/polym9020047
    [42]
    LIU T, WANG Q W, XIE Y J. et al. Effects of use of coupling agents on the properties of microfibrillar composite based on high-density polyethylene and polyamide-6[J]. Polymer Bulletin, 2014, 71: 685-703.
    [43]
    QUAN H, LI Z M, YANG M B, et al. On transcrystallinity in semi-crystalline polymer composites[J]. Composites Science and Technology,2005,65(7):999-1021.
    [44]
    RIZVI A, TABATABAEI A, VAHEDI P, et al. Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities[J]. Polymer,2018,135:185-192. doi: 10.1016/j.polymer.2017.12.006
    [45]
    LI Z M, LI L B, SHEN K Z, et al. Transcrystalline morphology of an in situ microfibrillar poly(ethylene terephthalate)/poly(propylene) blend fabricated through a slit extrusion hot stretching-quenching process[J]. Macromolecular Rapid Communications,2004,25(4):553-558. doi: 10.1002/marc.200300086
    [46]
    RIZVI A, PARK C B, FAVIS B D. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils[J]. Polymer,2015,68:83-91. doi: 10.1016/j.polymer.2015.04.081
    [47]
    RAGHAVAN S R, DOUGLAS J F. The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links[J]. Soft Matter,2012,8(33):8539-8546. doi: 10.1039/c2sm25107h
    [48]
    WONG A, GUO Y, PARK C B. Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide-Effects of extensional stresses and crystals[J]. Journal of Supercritical Fluids,2013,79:142-151. doi: 10.1016/j.supflu.2013.02.013
    [49]
    MORT R, PETERS E, CURTZWILER G, et al. Biofillers improved compression modulus of extruded PLA foams[J]. Sustainability,2022,14(9):5521.
    [50]
    NOFAR M, PACK C B. Poly(lactic acid) foaming[J]. Progress in Polymer Science,2014,39(10):1721-1741. doi: 10.1016/j.progpolymsci.2014.04.001
    [51]
    LI S, HE G, LIAO X, et al. Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam[J]. RSC Advances,2017,7(11):6266-6277. doi: 10.1039/C6RA26457C
    [52]
    WANG G, ZHAO J, MARK L H, et al. Ultra-tough and super thermal-insulation nanocellular PMMA/TPU[J]. Chemical Engineering Journal,2017,325:632-646. doi: 10.1016/j.cej.2017.05.116
    [53]
    WANG G, ZHAO J, YU K, et al. Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms[J]. Polymer,2017,119:28-39. doi: 10.1016/j.polymer.2017.05.016
    [54]
    QIAO Y, JALALI A, YANG J, et al. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites[J]. Journal of Materials Science,2021,56(4):3562-3575. doi: 10.1007/s10853-020-05328-5
    [55]
    ZHAO C, MARK L H, CHANG E, et al. Highly expanded, highly insulating polypropylene/polybutylene-terephthalate composite foams manufactured by nano-fibrillation technology[J]. Materials & Design,2020,188:108450.
    [56]
    KENNEDY P, ZHENG R. Flow analysis of injection molds[M]. Berlin: Springer, 2013: 106-137.
    [57]
    PATCHARAPHUN S, MENNIG G. Simulation and experimental investigations of material distribution in the sandwich injection molding process[J]. Polymer-Plastics Technology and Engineering,2006,45(6):759-768. doi: 10.1080/03602550600611651
    [58]
    KWEON M S, EMBABI M, SHIVOKHIN M E, et al. Tuning high and low temperature foaming behavior of linear and long-chain branched polypropylene via partial and complete melting[J]. Polymers,2022,14(1):44.
    [59]
    VISHAL B. Foaming and rheological properties of aqueous solutions: An interfacial study[J]. Reviews in Chemical Engineering,2021,39(2):60. doi: 10.1515/revce-2020-0060
    [60]
    QIAO Y H, LI Q, JALALI A, et al. In-situ microfibrillated poly(ε-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability[J]. Composites Part B: Engineering,2021,208:108594. doi: 10.1016/j.compositesb.2020.108594
    [61]
    RIZVI A, PARK C B. Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix[J]. Polymer,2014,55(16):4199-4205. doi: 10.1016/j.polymer.2014.06.014
    [62]
    JIANG J, LI Z H, YANG H G, et al. Microcellular injection molding of polymers: A review of process know-how, emerging technologies, and future directions[J]. Current Opinion in Chemical Engineering,2021,33:100694. doi: 10.1016/j.coche.2021.100694
    [63]
    HE M, XU C, ZHANG R, et al. Progress of polypropylene-supercritical CO2 extrusion foaming[J]. Polymer Materials Science & Engineering,2020,36(6):177-183.
    [64]
    付大炯, 王琪, 李振华, 等. 超临界N2及CO2注塑发泡聚丙烯性能对比研究[J]. 塑料工业, 2018, 46(11):81-84. doi: 10.3969/j.issn.1005-5770.2018.11.018

    FU Dajiong, WANG Qi, LI Zhenhua, et al. Comparative study on the properties of injection foamed polypropylene by using supercritical N2 and CO2[J]. China Plastics Industry,2018,46(11):81-84(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.11.018
    [65]
    RIZVI A, ANDALIB Z, PARK C B. Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability[J]. Polymer,2017,110:139-148. doi: 10.1016/j.polymer.2016.12.054
    [66]
    JIANG R, LIU T, XU Z, et al. Improving the continuous microcellular extrusion foaming ability with supercritical CO2 of thermoplastic polyether ester elastomer through in-situ fibrillation of polytetrafluoroethylene[J]. Polymers,2019,11(12):11121983.
    [67]
    ZHAO J, WANG G, ZHANG L, et al. Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding[J]. European Polymer Journal,2019,119:22-31. doi: 10.1016/j.eurpolymj.2019.07.016
    [68]
    WANG G, ZHAO J, WANG G, et al. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding[J]. Chemical Engineering Journal,2020,390:124520. doi: 10.1016/j.cej.2020.124520
    [69]
    JIANG C, HAN S, CHEN S H, et al. The role of PTFE in-situ fibrillation on PET microcellular foaming[J]. Polymer,2021,212:123171. doi: 10.1016/j.polymer.2020.123171
    [70]
    ZHAO J, WANG G, CHEN Z, et al. Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam[J]. Composites Part B: Engineering,2021,215:108786. doi: 10.1016/j.compositesb.2021.108786
    [71]
    YE Z, LI D, ZHANG F, et al. TPU modified by in-situ fiber forming and its foam performance research[J]. China Plastics Industry,2019,47(2):117-121, 133.
    [72]
    WEI L, HUANG A, SUN J, et al. Isotactic polypropylene/polyethylene terephthalate in situ microfibrillar composites foams using supercritical CO2[J]. Polymer Materials Science & Engineering,2018,34(7):66-71.
    [73]
    DHANUMALAYAN E, JOSHI G M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review[J]. Advanced Composites and Hybrid Materials,2018,1(2):247-268. doi: 10.1007/s42114-018-0023-8
    [74]
    李好义, 陈琪琪, 刘宇健, 等. 耐高温聚合物微/纳米纤维制备技术及应用研究进展[J]. 高分子材料科学与工程, 2020, 36(12):158-164. doi: 10.16865/j.cnki.1000-7555.2020.0297

    LI Haoyi, CHEN Qiqi, LIU Yujian, et al. Progress in preparation technology and application of high temperature resistant polymer micro/nano fibers[J]. Polymer Materials Science & Engineering,2020,36(12):158-164(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0297
    [75]
    JURCZUK K, GALESKI A, MORAWIEC J. Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes[J]. European Polymer Journal,2017,88:171-182. doi: 10.1016/j.eurpolymj.2017.01.024
    [76]
    WANG Y Q, MI J G, DU Z J, et al. Peculiar micro and nano cell morphology of PBT/PTFE nanofibrillated composite foams of supercritical CO2 foaming induced by in-situ formed 3D PTFE nanofiber networks[J]. Polymer,2021,232:124165. doi: 10.1016/j.polymer.2021.124165
    [77]
    ZHAI W, JIANG J, PARK C B. A review on physical foaming of thermoplastic and vulcanized elastomers[J]. Polymer Reviews,2022,62(1):95-141. doi: 10.1080/15583724.2021.1897996
    [78]
    CAO Y J, JIANG J, JIANG Y F, et al. Biodegradable highly porous interconnected poly(ε-caprolactone)/poly(L-lactide-co-ε-aprolactone) scaffolds by supercritical foaming for small-diameter vascular tissue engineering[J]. Polymers for Advanced Technologies, 2022, 33(1): 440-451.
    [79]
    党开放, 黄泓鑫, 武高健, 等. PLA/PBAT/PTFE原位成纤复合材料微孔发泡行为及性能[J]. 塑料工业, 2021, 49(8):61-65. doi: 10.3969/j.issn.1005-5770.2021.08.013

    DANG Kaifang, HUANG Hongxin, WU Gaojian, et al. Microcellular foaming behavior and properties of PLA/PBAT/PTFE in-situ microfibrilla composites[J]. China Plastics Industry,2021,49(8):61-65(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.08.013
    [80]
    COSTEUX S. CO2 blown nanocellular foams[J]. Journal of Applied Polymer Science,2015,132(16):41293.
    [81]
    LI Z M, YANG W, LI L B, et al. Morphology and nonisothermal crystallization of in situ microfibrillar poly(ethylene terephthalate)/polypropylene blend fabricated through slit-extrusion, hot-stretch quenching[J]. Journal of Polymer Science, Part B: Polymer Physics,2004,42(3):374-385. doi: 10.1002/polb.10660
    [82]
    LU A, YANG M B, LI Z M, et al. Tensile properties of poly(ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite formed via slit die extrusion and hot-stretching[J]. Materials Letters,2002,56(5):756-762. doi: 10.1016/S0167-577X(02)00609-2
    [83]
    HUANG R, LI Z M, YANG M B, et al. Poly(ethylene terephthalate)/polyethylene composite based on in-situ microfiber formation[J]. Polymer — Plastics Technology and Engineering,2002,41(1):19-32. doi: 10.1081/PPT-120002057
    [84]
    QIU L, ZHENG X H, ZHU J, et al. Thermal transport in high-strength polymethacrylimide (PMI) foam insulations[J]. International Journal of Thermophysics,2015,36(10-11):2523-2534. doi: 10.1007/s10765-014-1651-z
    [85]
    AZDAST T, HASANZADEH R. Increasing cell density/decreasing cell size to produce microcellular and nanocellular thermoplastic foams: A review[J]. Journal of Cellular Plastics,2021,57(5):769-797. doi: 10.1177/0021955X20959301
    [86]
    WANG G L, WANG C D, ZHAO J C, et al. Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material[J]. Nanoscale,2017,9(18):5996-6009. doi: 10.1039/C7NR00327G
    [87]
    RIZVI A, CHU R K M, PARK C B. Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams[J]. ACS Applied Materials & Interfaces,2018,10(44):38410-38417.
    [88]
    PINTO J, ATHANASSIOU A, FRAGOULI D. Surface modification of polymeric foams for oil spills remediation[J]. Journal of Environmental Management,2018,206:872-889. doi: 10.1016/j.jenvman.2017.11.060
    [89]
    GUO X M, YAO Y Y, ZHU P X, et al. Preparation of porous PTFE/C composite foam and its application in gravity-driven oil-water separation[J]. Polymer International,2021,10:6356.
    [90]
    HUANG P, WU F, SHEN B, et al. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation[J]. Chemical Engineering Journal,2019,370:1322-1330. doi: 10.1016/j.cej.2019.03.289
    [91]
    TANG Y, LIU Z, ZHAO K. Fabrication of hollow and porous polystyrene fibrous membranes by electrospinning combined with freeze-drying for oil removal from water[J]. Journal of Applied Polymer Science,2019,136(13):47262. doi: 10.1002/app.47262
    [92]
    LIU Z, TANG Y, ZHAO K, et al. Superhydrophobic SiO2 micro/nanofibrous membranes with porous surface prepared by freeze electrospinning for oil adsorption[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2019,568:356-361.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (845) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return