Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
SHI Tingting, LIU Dongqing, CHENG Haifeng. Research progress of personal thermal management materials based on infrared radiation regulation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2480-2494. doi: 10.13801/j.cnki.fhclxb.20220809.003
Citation: SHI Tingting, LIU Dongqing, CHENG Haifeng. Research progress of personal thermal management materials based on infrared radiation regulation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2480-2494. doi: 10.13801/j.cnki.fhclxb.20220809.003

Research progress of personal thermal management materials based on infrared radiation regulation

doi: 10.13801/j.cnki.fhclxb.20220809.003
Funds:  National Natural Science Foundation of China (52073303); Natural Science Foundation of Hunan Province (2021JJ10049)
  • Received Date: 2022-05-13
  • Accepted Date: 2022-07-29
  • Rev Recd Date: 2022-07-02
  • Available Online: 2022-08-09
  • Publish Date: 2023-05-15
  • Maintaining thermal comfort is of essential significance for human normal life, but traditional heating, ventilation, and air conditioning systems are inefficient and produce large carbon footprint. Personal thermal management materials based on infrared radiation regulation provide new ways to mitigate the pressing burden of energy crisis and keep thermal comfort of humankind, which harnesses thermal management of human body and local microenvironment for personalized temperature control. Here, the latest progress on personal thermal management materials with engineered infrared radiation properties are reviewed. The regulation principles of radiative cooling and radiative heating are elucidated from both indoor and outdoor scenarios, and the bidirectional temperature regulation mode of radiative cooling/heating is discussed. The design ideas, fabrication, microstructure and temperature regulation effect of corresponding materials are elaborated, an outlook about development trend is provided as well.

     

  • loading
  • [1]
    WEBB P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions[J]. European Journal of Applied Physiology and Occupational Physiology,1992,64(5):471-476. doi: 10.1007/BF00625070
    [2]
    NASTOS P T, MATZARAKIS A. Weather impacts on respiratory infections in Athens, Greece[J]. International Journal of Biometeorology,2006,50(6):358-369. doi: 10.1007/s00484-006-0031-1
    [3]
    FANG Y, ZHAO X, CHEN G, et al. Smart poly-ethylene textiles for radiative and evaporative cooling[J]. Joule,2021,5(4):752-754. doi: 10.1016/j.joule.2021.03.019
    [4]
    WANG Z, DE DEAR R, LUO M, et al. Individual difference in thermal comfort: A literature review[J]. Building and Environment,2018,138:181-193. doi: 10.1016/j.buildenv.2018.04.040
    [5]
    FONG K F, HANBY V I, CHOW T T. HVAC system optimization for energy management by evolutionary programming[J]. Energy and Buildings,2006,38(3):220-231. doi: 10.1016/j.enbuild.2005.05.008
    [6]
    HOTY T, LEE K H, ZHANG H, et al. Energy savings from extended air temperature setpoints and reductions in room air mixing [C]//Proceedings of the 13th International Conference on Environmental Ergonomics. San Jose: Curran Associates, Inc., 2009: 1-5.
    [7]
    HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science,2016,353(6303):1019-1023. doi: 10.1126/science.aaf5471
    [8]
    CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications,2017,8(1):1-8. doi: 10.1038/s41467-016-0009-6
    [9]
    ZHU F L, FENG Q Q. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments[J]. International Journal of Thermal Sciences,2021,165(6303):106899-106912.
    [10]
    GU B, LIANG K, ZHANG T, et al. Multifunctional lami-nated membranes with adjustable infrared radiation for personal thermal management applications[J]. Cellulose,2020,27(14):8471-8483. doi: 10.1007/s10570-020-03354-9
    [11]
    CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials,2018,30(14):1706807-1706814. doi: 10.1002/adma.201706807
    [12]
    LIU Z, LYU J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano,2019,13(5):5703-5711. doi: 10.1021/acsnano.9b01094
    [13]
    LIU P, LI Y, XU Y, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure[J]. Small,2018,14(4):1702926-1702931. doi: 10.1002/smll.201702926
    [14]
    HONG S, GU Y, SEO JOON K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances,2019,5(5):536-547. doi: 10.1126/sciadv.aaw0536
    [15]
    MOKHTARI YAZDI M, SHEIKHZADEH M. Personal cooling garments: A review[J]. Journal of the Textile Institute,2014,105(12):1231-1250. doi: 10.1080/00405000.2014.895088
    [16]
    FORT J. On the nonequilibrium generalization of the Wien displacement[J]. Physics Letters A,1999,253(5):266-272.
    [17]
    BORISKINA S V. Nanoporous fabrics could keep you cool[J]. Science,2016,353(6303):986-987. doi: 10.1126/science.aah5577
    [18]
    STEKETEE J. Spectral emissivity of skin and pericardium[J]. Physics in Medicine and Biology,1973,18(5):686-694. doi: 10.1088/0031-9155/18/5/307
    [19]
    HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America,1937,23(12):624-631. doi: 10.1073/pnas.23.12.624
    [20]
    WINSLOW C E A, GAGGE A P, HERRINGTON L P. The influence of air movement upon heat losses from the clothed human body[J]. American Journal of Physiology,1939,127(3):505-518. doi: 10.1152/ajplegacy.1939.127.3.505
    [21]
    BOIS E. Heat loss from the human body: Harvey lecture, December 15, 1938[J]. Bulletin of the New York Academy of Medicine,1939,15(3):143-173.
    [22]
    SHIN S, CHEN R. Cool textile[J]. Joule,2021,5(9):2258-2260. doi: 10.1016/j.joule.2021.08.011
    [23]
    SILVERSTEIN R M, BASSLER G C. Spectrometric identification of organic compounds[J]. Journal of Chemical Education,1962,39(11):546-553. doi: 10.1021/ed039p546
    [24]
    STUART B H. Infrared spectroscopy: Fundamentals and applications[M]. London: John Wiley & Sons, Inc., 2004: 76-79.
    [25]
    LOTENS W A, PIETERS A M J. Transfer of radiative heat through clothing ensembles[J]. Ergonomics,1995,38(6):1132-1155. doi: 10.1080/00140139508925178
    [26]
    HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances,2017,3(11):1700895-1700903. doi: 10.1126/sciadv.1700895
    [27]
    LIENHARD J H, LIENHARD J H. A heat transfer textbook[M]. 3th Edition. Cambridge: Phlogiston Press, 2016.
    [28]
    TONG J K, HUANG X, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics,2015,2(6):769-778. doi: 10.1021/acsphotonics.5b00140
    [29]
    BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. London: John Wiley & Sons, Inc., 2008: 72-78.
    [30]
    GULMINE J V, JANISSEK P R, HEISE H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing,2002,21(5):557-563. doi: 10.1016/S0142-9418(01)00124-6
    [31]
    佘长辉, 于宏伟. 聚丙烯变温傅里叶变换透射红外光谱研究[J]. 化学工程师, 2016, 30(7):75-78. doi: 10.16247/j.cnki.23-1171/tq.20160775

    SHE Changhui, YU Hongwei. Temperature effect on FTIR spectrum of polypropylene[J]. Chemical Engineer,2016,30(7):75-78(in Chinese). doi: 10.16247/j.cnki.23-1171/tq.20160775
    [32]
    朱开贵, 石建中, 李可斌, 等. 聚四氟乙烯薄膜的制备及其红外光谱研究[J]. 物理学报, 1997, 46(9):1764-1767. doi: 10.3321/j.issn:1000-3290.1997.09.015

    ZHU Kaigui, SHI Jianzhong, LI Kebin, et al. Preparations and infrared spectrum studies of polytetrafluoroethylene thin films[J]. Acta Physica Sinica,1997,46(9):1764-1767(in Chinese). doi: 10.3321/j.issn:1000-3290.1997.09.015
    [33]
    朱吴兰. 红外光谱法鉴别不同种类的聚酰胺[J]. 塑料, 2009, 38(3):114-117.

    ZHU Wulan. Discrimination of different polyamides by IR[J]. Plastics,2009,38(3):114-117(in Chinese).
    [34]
    CHEN J, WANG Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule,2017,1(3):480-521. doi: 10.1016/j.joule.2017.09.004
    [35]
    UGBOLUE S C. Polyolefin fibres: Structure, properties and industrial applications[M]. Sawston: Woodhead Publishing, 2017: 14-15.
    [36]
    LIU R, WANG X, YU J, et al. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling[J]. Macromolecular Materials and Engineering,2018,303(3):1700456-1700465. doi: 10.1002/mame.201700456
    [37]
    KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nano PE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment,2018,145:85-95. doi: 10.1016/j.buildenv.2018.09.021
    [38]
    PENG Y, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability,2018,1(2):105-112. doi: 10.1038/s41893-018-0023-2
    [39]
    CAI L, PENG Y, XU J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule,2019,3(6):1478-1486. doi: 10.1016/j.joule.2019.03.015
    [40]
    ALBERGHINI M, HONG S, LOZANO L M, et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling[J]. Nature Sustainability,2021,4(8):715-724. doi: 10.1038/s41893-021-00688-5
    [41]
    WEI J F, HU X Y, SUN L Q, et al. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter[J]. Applied Optics,2015,54(9):2289-2295. doi: 10.1364/AO.54.002289
    [42]
    AKHALAYA M Y, MAKSIMOV G V, RUBIN A B, et al. Molecular action mechanisms of solar infrared radiation and heat on human skin[J]. Ageing Research Reviews,2014,16:1-11. doi: 10.1016/j.arr.2014.03.006
    [43]
    CAI L, SONG A Y, WEI L, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials,2018,30(35):1802152-1802158. doi: 10.1002/adma.201802152
    [44]
    PANWAR K, JASSAL M, AGRAWAL A K. TiO2-SiO2 Janus particles treated cotton fabric for thermal regulation[J]. Surface and Coatings Technology,2017,309:897-903. doi: 10.1016/j.surfcoat.2016.10.066
    [45]
    WONG A, DAOUD W A, LIANG H H, et al. Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric[J]. Solar Energy Materials and Solar Cells,2015,134:425-437. doi: 10.1016/j.solmat.2014.12.011
    [46]
    MEHRIZI M K, MORTAZAVI S M, MALLAKPOUR S, et al. The effect of nano- and micro-TiO2 particles on reflective behavior of printed cotton/nylon fabrics in VIS/NIR regions[J]. Color Research & Application,2012,37(3):199-205.
    [47]
    WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells,2020,211:110525-110531. doi: 10.1016/j.solmat.2020.110525
    [48]
    ZHU B, LI W, ZHANG Q, et al. Subambient daytime radia-tive cooling textile based on nanoprocessed silk[J]. Nature Nanotechnology,2021,16(12):1342-1348. doi: 10.1038/s41565-021-00987-0
    [49]
    LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology,2021,16(2):153-158. doi: 10.1038/s41565-020-00800-4
    [50]
    SONG Y N, LI Y, YAN D X, et al. Novel passive cooling composite textile for both outdoor and indoor personal thermal management[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105738-105746. doi: 10.1016/j.compositesa.2019.105738
    [51]
    XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces,2019,11(47):44673-44681.
    [52]
    SONG Y N, LEI M Q, DENG L F, et al. Hybrid metamaterial textiles for passive personal cooling indoors and outdoors[J]. ACS Applied Polymer Materials,2020,2(11):4379-4386. doi: 10.1021/acsapm.0c00234
    [53]
    WANG X, LIU X, LI Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials,2020,30(5):1907562-1907570. doi: 10.1002/adfm.201907562
    [54]
    ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science,2021,373(6555):692-696. doi: 10.1126/science.abi5484
    [55]
    SONG Y N, MA R J, XU L, et al. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces,2018,10(48):41637-41644.
    [56]
    SONG Y N, LEI M Q, LEI J, et al. A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling[J]. Advanced Materials Technologies,2020,5(7):2000287-2000295. doi: 10.1002/admt.202000287
    [57]
    KIM H, MCSHERRY S, BROWN B, et al. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology[J]. ACS Applied Materials & Interfaces,2020,12(39):43553-43559.
    [58]
    KIM G, PARK K, HWANG K J, et al. Highly sunlight reflec-tive and infrared semi-transparent nanomesh textiles[J]. ACS Nano,2021,15(10):15962-15971. doi: 10.1021/acsnano.1c04104
    [59]
    DOE U S. Buildings energy databook[M]. US Department of Energy: Energy Efficiency and Renewable Energy Department, 2011: 286-287.
    [60]
    HAYES S G, VENKATRAMAN P. Materials and technology for sportswear and performance apparel[M]. Boca Raton: CRC Press, 2016: 153-169.
    [61]
    HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters,2015,15(1):365-371. doi: 10.1021/nl5036572
    [62]
    LIU Q, HUANG J, ZHANG J, et al. Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure[J]. ACS Applied Materials & Interfaces,2018,10(2):2026-2032.
    [63]
    HAZARIKA A, DEKA B K, KIM D, et al. Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu-Ni core-shell nanowires[J]. Nano Letters,2018,18(11):6731-6739. doi: 10.1021/acs.nanolett.8b02408
    [64]
    LUO Y, FU B, SHEN Q, et al. Patterned surfaces for solar-driven interfacial evaporation[J]. ACS Applied Materials & Interfaces,2019,11(7):7584-7590.
    [65]
    PRECIADO J A, RUBINSKY B, OTTEN D, et al. Radiative properties of polar bear hair [C]//ASME 2002 International Mechanical Engineering Congress and Exposition. New York: ASME Press, 2002: 57-58.
    [66]
    YUE X, HE M, ZHANG T, et al. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management[J]. ACS Applied Materials & Interfaces,2020,12(10):12285-12293.
    [67]
    SHI M, SHEN M, GUO X, et al. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating[J]. ACS Nano,2021,15(7):11396-11405. doi: 10.1021/acsnano.1c00903
    [68]
    LUO H, LI Q, DU K, et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities[J]. Nano Energy,2019,65:103998-104006. doi: 10.1016/j.nanoen.2019.103998
    [69]
    YANG H C, HOU J, CHEN V, et al. Janus membranes: Exploring duality for advanced separation[J]. Angewandte Chemie International Edition,2016,55(43):13398-13407. doi: 10.1002/anie.201601589
    [70]
    YUE X, ZHANG T, YANG D, et al. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management[J]. Nano Energy,2019,63:103808-103817. doi: 10.1016/j.nanoen.2019.06.004
    [71]
    QIU S, JIA H, JIANG S X. Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters,2021,300:130217-130220. doi: 10.1016/j.matlet.2021.130217
    [72]
    LUO H, ZHU Y, XU Z, et al. Outdoor personal thermal management with simultaneous electricity generation[J]. Nano Letters,2021,21(9):3879-3886. doi: 10.1021/acs.nanolett.1c00400
    [73]
    DAI B, LI X, XU T, et al. Radiative cooling and solar heating Janus films for personal thermal management[J]. ACS Applied Materials & Interfaces,2022,14(16):18877-18883.
    [74]
    SONG Y N, LEI M Q, HAN D L, et al. Multifunctional membrane for thermal management applications[J]. ACS Applied Materials & Interfaces,2021,13(16):19301-19311.
    [75]
    YE G, WAN Y, WU J, et al. Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction[J]. Nano Energy,2022,97:107148-107161. doi: 10.1016/j.nanoen.2022.107148
    [76]
    ZHANG X A, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science,2019,363(6427):619-623. doi: 10.1126/science.aau1217
    [77]
    LEUNG E M, COLORADO E M, STIUBIANU G T, et al. A dynamic thermoregulatory material inspired by squid skin[J]. Nature Communications,2019,10(1):1-10. doi: 10.1038/s41467-018-07882-8
    [78]
    TANG K, DONG K, LI J, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science,2021,374(6574):1504-1509. doi: 10.1126/science.abf7136
    [79]
    WANG S, JIANG T, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science,2021,374(6574):1501-1504. doi: 10.1126/science.abg0291
    [80]
    LIN C, HUR J, CHAO C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation[J]. Science Advances,2022,8(17):7359-7369. doi: 10.1126/sciadv.abn7359
    [81]
    ZHANG X, LIU C, SHEN C, et al. Promising commercial fabrics with radiative cooling for personal thermal management[J]. Science Bulletin,2022,67(3):229-231. doi: 10.1016/j.scib.2021.08.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1213) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return