Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
GUO Chenchen, ZHANG Yunlong, WANG Yu, et al. Fe3O4/PDMS modified collagen sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001
Citation: GUO Chenchen, ZHANG Yunlong, WANG Yu, et al. Fe3O4/PDMS modified collagen sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4652-4663. doi: 10.13801/j.cnki.fhclxb.20220506.001

Fe3O4/PDMS modified collagen sponge and its oil-water separation performance

doi: 10.13801/j.cnki.fhclxb.20220506.001
  • Received Date: 2022-02-28
  • Accepted Date: 2022-04-23
  • Rev Recd Date: 2022-04-16
  • Available Online: 2022-05-07
  • Publish Date: 2022-08-22
  • In order to develop a multi-functional oil-water separation sponge that is rich in raw materials, environmentally friendly, easy to operate in complex environment, and of good reusability, superhydrophobic collagen-based composite sponge (Fe3O4/PDMS-COL) was prepared by impregnating collagen sponge with polydimethylsiloxane (PDMS)/ferroferric oxide nanoparticles (Fe3O4). The changes of chemical structure and microstructure after modification were characterized, and the oil-water separation performance was studied. According to the measurement of contact angle, when the concentration of collagen (COL) is 10 mg/mL and the concentration of PDMS is 15vol%, the water contact angle of the composite sponge reaches 150.3°. The results from FTIR, XPS, XRD and TG show that Fe3O4/PDMS compounds with collagen sponge successfully. FE-SEM observation shows that the addition of Fe3O4 nanoparticles construct rough surface structures effectively. Fe3O4/PDMS-COL can adsorb a variety of oil phases, including benzene, n-hexane, ethyl acetate, vacuum pump oil, peanut oil, among which the adsorption capacity (47 g/g) toward ethyl acetate is the highest, meanwhile the separation efficiency towards various oil phases reaches no less than 99%. After recycling for 20 times for absorbing benzene, both of the contact angle and magnetism of the sponge do not reduce significantly. Moreover, Fe3O4/PDMS-COL has a desirable emulsion separation ability and can effectively separate oil-in-water emulsion. Oil-water separation experiments were carried out in various scenarios under the action of external magnetic field, demonstrating the favourable magnetic responsiveness and manipulation. In addition, Fe3O4/PDMS-COL exhibits a good flame retardant performance. Furthermore, Fe3O4/PDMS-COL possesses an excellent separation capacity toward solid oil/water system in a complex environment, due to its near infrared photothermal effect.

     

  • loading
  • [1]
    DUBANSKY B, WHITEHEAD A, MILLER J T, et al. Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident gulf killifish (Fundulus grandis)[J]. Environmental Science & Technology,2013,47(10):5074-5082. doi: 10.1021/es400458p
    [2]
    SU L, WANG H J, NIU M, et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel[J]. ACS Nano,2018,12(4):3103-3111. doi: 10.1021/acsnano.7b08577
    [3]
    JAYARAMULU K, GEYER F, PETR M, et al. Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption[J]. Advanced Materials,2017,29(12):1605307. doi: 10.1002/adma.201605307
    [4]
    纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J/OL]. 复合材料学报: 1-10[2022-08-30]. DOI: 10.13801/j.cnki.fhclxb.20211217.001.

    JI Haonan, YI Changfeng, XU Zushun, et al. Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica: 1-10[2022-08-30](in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211217.001.
    [5]
    管浩, 戴鑫建, 王鑫, 等. 木基多孔油水分离材料研究进展[J]. 木材科学与技术, 2022, 36(1):1-8. doi: 10.12326/j.2096-9694.2021183

    GUAN Hao, DAI Xinjian, WANG Xin, et al. Research review of wood-based porous materials for oil/water separation[J]. Chinese Journal of Wood Science and Technology,2022,36(1):1-8(in Chinese). doi: 10.12326/j.2096-9694.2021183
    [6]
    叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050.

    YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050(in Chinese).
    [7]
    YANG Q, TANG L, GUO C, et al. A bioinspired gallol-functionalized collagen as wet-tissue adhesive for biomedical applications[J]. Chemical Engineering Journal,2021,417:127962. doi: 10.1016/j.cej.2020.127962
    [8]
    LI Y, ZHANG H, MA C, et al. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation[J]. Carbohydrate Polymers,2019,226:115279. doi: 10.1016/j.carbpol.2019.115279
    [9]
    LI L, LIU L, LEI J, et al. Intelligent sponge with reversibly tunable super-wettability: Robust for effective oil–water separation as both the absorber and filter tolerate fouling and harsh environments[J]. Journal of Materials Chemistry A,2016,4(31):12334-12340. doi: 10.1039/C6TA03581G
    [10]
    WU J, DING Y, WANG J, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A,2018,6(16):7014-7020. doi: 10.1039/C8TA01539B
    [11]
    SUREWICZ W K, MANTSCH H H, CHAPMAN D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment[J]. Biochemistry,1993,32(2):389-394. doi: 10.1021/bi00053a001
    [12]
    YANG K, PENG H, WEN Y, et al. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles[J]. Applied Surface Science,2010,256(10):3093-3097. doi: 10.1016/j.apsusc.2009.11.079
    [13]
    ZHOU D, WANG L, CHEN X, et al. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis[J]. Chemical Engineering Journal,2020,401:126024. doi: 10.1016/j.cej.2020.126024
    [14]
    JEON H, LEE C S, PATEL R, et al. Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer[J]. ACS Applied Materials & Interfaces,2015,7(14):7767-7775. doi: 10.1021/acsami.5b01010
    [15]
    LIU Y, WANG X, FENG S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials,2019,29(29):1902488. doi: 10.1002/adfm.201902488
    [16]
    RADU G L, BAIULESCU G L. Surface analysis of collagen membranes by X-ray photoelectron spectroscopy[J]. Journal of Molecular Structure,1992,293:265-268. doi: 10.1016/0022-2860(93)80064-3
    [17]
    SHARAN J, KOUL V, DINDA A K, et al. Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion—An in-vitro study[J]. Colloids and Surfaces B: Biointerfaces,2018,161:1-9. doi: 10.1016/j.colsurfb.2017.10.024
    [18]
    SCHNYDER B, LIPPERT T, KÖTZ R, et al. UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry[J]. Surface Science,2003,532-535:1067-1071.
    [19]
    LI J J, ZHOU Y N, LUO Z H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation[J]. Chemical Engineering Journal,2017,322:693-701. doi: 10.1016/j.cej.2017.04.074
    [20]
    SU X, LI H, LAI X, et al. Dual-functional superhydrophobic textile with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation[J]. ACS Applied Materials & Interfaces,2018,10(4):4213-4221. doi: 10.1021/acsami.7b15909
    [21]
    ZHANG Y, CHAI C P, LUO Y J, et al. Synthesis, structure and electromagnetic properties of mesoporous Fe3O4 aerogels by sol-gel method[J]. Materials Science and Engineering: B,2014,188:13-19. doi: 10.1016/j.mseb.2014.06.002
    [22]
    NEWBURY D E. Mistakes encountered during autom-atic peak identification in low beam energy X-ray microanalysis[J]. Scanning,2007,29(4):137-151. doi: 10.1002/sca.20009
    [23]
    YU T, HALOUANE F, MATHIAS D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification[J]. Chemical Engineering Journal,2020,384:123339. doi: 10.1016/j.cej.2019.123339
    [24]
    GE J, JIN Q, ZONG D, et al. Biomimetic multilayer nanofibrous membranes with elaborated superwettability for effective purification of emulsified oily wastewater[J]. ACS Applied Materials & Interfaces,2018,10(18):16183-16192. doi: 10.1021/acsami.8b01952
    [25]
    许亮鑫. 特殊浸润性海绵的制备及油水分离应用研究[D]. 北京: 清华大学, 2016.

    XU Liangxin. Research on preparation of special wettable sponge and application of oil-water separation[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [26]
    贺兵. 高抗污油水分离膜制备及分离性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HE Bing. Preparation of superantifouling membrance for oil-water separation and study of separation performance[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [27]
    LEI Z, DENG Y, WANG C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of Materials Chemistry A,2018,6(7):3258-3263. doi: 10.1039/C7TA10566E
    [28]
    WANG F, LI X S, LI W T, et al. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo[J]. Materials Science and Engineering: C,2018,90:46-56. doi: 10.1016/j.msec.2018.04.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1093) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return