Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Yang, LIN Zhenhui, TAO Tao, et al. Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002
Citation: LIU Yang, LIN Zhenhui, TAO Tao, et al. Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5966-5972. doi: 10.13801/j.cnki.fhclxb.20211230.002

Construction and application of carrageenan/poly(N-isopropylacrylamide)-based thermochromic gel

doi: 10.13801/j.cnki.fhclxb.20211230.002
  • Received Date: 2021-10-20
  • Accepted Date: 2021-12-17
  • Rev Recd Date: 2021-11-25
  • Available Online: 2021-12-30
  • Publish Date: 2022-12-01
  • The dynamic transparent-opaque transition behavior of the stimuli-chromic materials makes themselves have the ability to modulate the sunlight, which can reduce the energy consumption of the building. However, these materials usually involved some weak points such as high manufacturing costs, complex operation, and additional power consumption. Herein, a low-cost composite gel (KCA/PNIPAM) with excellent solar modulation ability and high stability was prepared by dispersing poly(N-isopropylacrylamide) (PNIPAM) gel microspheres into a carrageenan (KCA) matrix. In this hydrogel. KCA has a porous 3D network structure, which can effectively support PNIPAM particles, realizing the uniform dispersion and inhibiting the agglomeration and sedimentation of PNIPAM. KCA/PNIPAM gel exhibits the excellent solar modulation ability (ΔT=86%, difference in transmittance at different temperatures), when exposed to xenon lamp and sunlight, KCA/PNIPAM smart windows can lower the temperature by 5°C and 4°C respectively compared with ordinary glass windows. In conclusion, KCA/PNIPAM has the advantages of low response temperature (31.7°C), excellent solar modulation ability, long-term stability, low cost and simple manufacturing, making it a potential candidate for energy-saving materials of building.

     

  • loading
  • [1]
    LI Tian, ZHAI Yao, HE Shuaiming, et al. A radiative cooling structural material[J]. Science,2019,364(6442):860-763.
    [2]
    YANG Luyao, FENG Changping, BAI Lu, et al. Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management[J]. Chemical Engineering Journal,2021,425:131466.
    [3]
    CAO Xiaodong, DAI Xilei, LIU Junjie. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade[J]. Energy and Buildings,2016,128:198-213. doi: 10.1016/j.enbuild.2016.06.089
    [4]
    HEE W J, ALGHOUL M A, BAKHTYAR B, et al. The role of window glazing on daylighting and energy saving in Buildings[J]. Renewable and Sustainable Energy Reviews,2015,42:323-343. doi: 10.1016/j.rser.2014.09.020
    [5]
    ZHOU Yang, WANG Shancheng, PENG Jinqing, et al. Liquid thermo-responsive smart window derived from hydrogel[J]. Joule,2020,4(11):2458-2474. doi: 10.1016/j.joule.2020.09.001
    [6]
    JIANG Feng, LIU He, LI Yiyu, et al. Lightweight, Mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112. doi: 10.1021/acsami.7b15125
    [7]
    ZHAO Xinpeng, HUANG Caoxing, XIAO Daming, et al. Melanin-inspired design: Preparing sustainable photothermal materials from lignin for energy generation[J]. ACS Applied Materials & Interfaces,2021,13(6):7600-7607. doi: 10.1021/acsami.0c21256
    [8]
    WANG Jiaqi, MENG Cuiling, GU Qian, et al. Normally transparent tribo-induced smart window[J]. ACS Nano,2020,14(3):3630-3639. doi: 10.1021/acsnano.0c00107
    [9]
    MOSER M L, LI G, CHEN M, et al. Fast electrochromic device based on single-walled carbon nanotube thin films[J]. Nano Letters,2016,16(9):5386-5393. doi: 10.1021/acs.nanolett.6b01564
    [10]
    WANG Mi, GAO Yanfeng, CAO Chuanxiang, et al. Binary solvent colloids of thermosensitive poly(N-isopropylacrylamide) microgel for smart windows[J]. Industrial & Engi-neering Chemistry Research,2014,53(48):18462-18472.
    [11]
    LI H, ZHANG W, ELEZZABI A Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows[J]. Advanced Materials,2020,32(43):e2003574. doi: 10.1002/adma.202003574
    [12]
    WU L, ZHAO Q, HUANG H, et al. Sol-gel based photochromic coating for solar responsive smart window[J]. Surface and Coatings Technology,2017,320:601-607. doi: 10.1016/j.surfcoat.2016.10.074
    [13]
    KE Y, BALIN I, WANG N, et al. Two-dimensional SiO2/VO2 photonic crystals with statically visible and dynamically infrared modulated for smart window deployment[J]. ACS Applied Materials & Interfaces,2016,8(48):33112-33120. doi: 10.1021/acsami.6b12175
    [14]
    ZHAO Zhengjing, LIU Yi, YU Zhinong, et al. Sn-W co-doping improves thermochromic performance of VO2 films for smart windows[J]. ACS Applied Energy Materials,2020,3(10):9972-9979. doi: 10.1021/acsaem.0c01651
    [15]
    TIAN Jing, PENG Huayun, DU Xiaosheng, et al. Hybrid thermochromic microgels based on UCNPs/PNIPAm hydrogel for smart window with enhanced solar modulation[J]. Journal of Alloys and Compounds,2021,858:157725.
    [16]
    LEE S J, LEE S H, KANG H W, et al. Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode[J]. Chemical Engineering Journal,2021,416:129028.
    [17]
    ZHAO X, MOFID S A, JELLE B P, et al. Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits[J]. Applied Energy,2020,278:115663. doi: 10.1016/j.apenergy.2020.115663
    [18]
    秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423.

    QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423(in Chinese).
    [19]
    YANG Chenxi, CHEN Jianfeng, ZENG Xiaofei, et al. Design of the alkali-metal-doped WO3 as a near-infrared shielding material for smart window[J]. Industrial & Engineering Chemistry Research,2014,53(46):17981-17988.
    [20]
    XIE Sijie, CHEN Yongbo, BI Zhijie, et al. Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance[J]. Chemical Engineering Journal,2019,370:1459-1466. doi: 10.1016/j.cej.2019.03.242
    [21]
    MA S, TING H, MA Y, et al. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers[J]. AIP Advances, 2015, 5(5): 057154.
    [22]
    WANG Y, RUNNERSTROM E L, MILLIRON D J. Switchable materials for smart windows[J]. Annual Review of Che-mical and Biomolecular Engineering,2016,7(1):283-304. doi: 10.1146/annurev-chembioeng-080615-034647
    [23]
    XU Jingwen, ZHANG Yong, ZHAI Tingting, et al. Electrochromic-tuned plasmonics for photothermal sterile window[J]. ACS Nano,2018,12(7):6895-6903. doi: 10.1021/acsnano.8b02292
    [24]
    WU Mengchun, SHI Yusu, LI Renyuan, et al. Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance[J]. ACS Applied Materials & Interfaces,2018,10(46):39819-39827. doi: 10.1021/acsami.8b15574
    [25]
    TANG Lin, WANG Ling, YANG Xiao, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications[J]. Progress in Materials Science,2021,115:100702. doi: 10.1016/j.pmatsci.2020.100702
    [26]
    刘凯. PNIPAM温敏水凝胶的制备及其热致变色特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LIU Kai. Preparation of PNIPAM thermosensitive hydrogel and its thermochromic properties[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [27]
    LEE H Y, CAI Y, BI S, et al. A dual-responsive nanocompo-site toward climate-adaptable solar modulation for energy-saving smart windows[J]. ACS Applied Materials & Interfaces,2017,9:6054-6063. doi: 10.1021/acsami.6b15065
    [28]
    TANG Lin, WANG Lin, YANG Xiao, et al. Thermoresponsive three-stage optical modulation of a self-healing composite hydrogel[J]. Macromolecular Chemistry and Physics,2018,219:1800329. doi: 10.1002/macp.201800329
    [29]
    孙瑞鸿, 韦雄雄, 胡晓霞, 等. 基于PNIPAM微凝胶的复合水凝胶制备及其性能研究[J]. 现代化工, 2019, 39(9):147-151.

    SUN R H, WEI X X, HU X X, et al. Synthesis and property of composite hydrogel based on PNIPAM microgels[J]. Modern Chemical Industry,2019,39(9):147-151(in Chinese).
    [30]
    姜芮, 王玲, 吴迪, 等. 含纳米金聚乙烯基吡咯烷酮/聚(N-异丙基丙烯酰胺)智能杂化微凝胶的合成[J]. 当代化工, 2021, 50(4):858-862. doi: 10.3969/j.issn.1671-0460.2021.04.025

    JIANG Rui, WANG Ling, WU Di, et al. Synthesis of polyvinylpyrrolidone/poly(N-isopropylacrylamide) intelligent hybrid microgel containing nano-gold[J]. Contemporary Chemical Industry,2021,50(4):858-862(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.04.025
    [31]
    张雁飞, 孟繁蓉, 郭艺伟, 等. 食品包装用卡拉胶-甲基纤维素膜的制备及表征[J]. 食品科技, 2017, 42(11):62-66.

    ZHANG Yanfei, MENG Fanrong, GUO Yiwei, et al. Preparation and characterization of carrageenan-methylcellulose film for food packaging[J]. Food Science and Technology,2017,42(11):62-66(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1080) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return