LU Jun, ZHAO Xiaopeng. ELECTRORHEOLOGICAL BEHAVIOR OF POLY-o- PHENYLENEDIAMINE/MONTMORILLONITE NANOCOMPOSITE[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 8-12.
Citation: LU Jun, ZHAO Xiaopeng. ELECTRORHEOLOGICAL BEHAVIOR OF POLY-o- PHENYLENEDIAMINE/MONTMORILLONITE NANOCOMPOSITE[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 8-12.

ELECTRORHEOLOGICAL BEHAVIOR OF POLY-o- PHENYLENEDIAMINE/MONTMORILLONITE NANOCOMPOSITE

More Information
  • Received Date: May 07, 2003
  • Revised Date: July 20, 2003
  • Poly-o-phenylenediamine/montmorillonite nanocomposite (PoPD-MMT) particles were synthesized by an emulsion intercalation method and characterized by IR, XRD and TEM respectively. The structure analysis shows that the diameter of PoPD-MMT particles is about 100 nm. The electrorheological properties of the suspensions of PoPD-MMT particles in silicone oil (Volume fraction,22%) have been investigated under DC electric fields. It was found that the mechanic performance of PoPD-MMT ER fluids displays a notable ER effect. The shear stress of PoPD-MMT ER fluid is 8.27 kPa (3 kV/mm, 74.5 s-1), which is 2.5 times that of the electrorheological fluid at zero field, and much higher than that of pure poly-o-phenylenediamine (PoPD) and pure montmorillonite (MMT). Furthermore, the sedimentation ratio of PoPD-MMT ERF was about 97% after 60 days. The dielectric constant and the dielectric loss tangent of PoPD-MMT nanocomposite were higher than those of PoPD and MMT. It is apparent that the notable ER effect of PoPD-MMT ER fluid was attributed to the prominent dielectric property of the poly-o-phenylenediamine/montmorillonite nanocomposite particles.
  • Related Articles

    [1]ZHANG Zhichao, DONG Hongcheng, WANG Fangxin. Phase-field fracture model of anisotropic materials based on stress volumetric-deviatoric split[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4408-4417. DOI: 10.13801/j.cnki.fhclxb.20240019.004
    [2]ZHANG Kunjie, XU Zhaoyang. Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 718-725. DOI: 10.13801/j.cnki.fhclxb.20210414.001
    [3]ZHANG Jinna, WANG Chaoyang, ZHU Shijie, YANG Xiangtao, WU Haihong, HUANG Ming. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
    [4]LV Shuangqi, MA Yinwei, YANG Xiaoguang, SHI Duoqi, TENG Xuefeng, QI Hongyu. Anisotropic thermal deformation measurement of aerogel composites based on digital image correlation method[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 2020-2029. DOI: 10.13801/j.cnki.fhclxb.20170103.001
    [5]LI Mingjun, LI Pengping, XU Yongwen, CAO Yihua, YE Hao. Influence of different boundary conditions and strain amplitudes on the structural internal friction of anisotropic laminated damped structures[J]. Acta Materiae Compositae Sinica, 2007, 24(5): 66-71.
    [6]YANG Cai-yun| LI Jia-lu, . Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 59-64.
    [7]LI Mingjun, LIU Guiwu, XU Yongwen, CAO Yihua, YE Hao. INFLUENCES OF BONDINGLAYER ON THE INTERNAL FRICTION CHARACTERISTICS OF ANISOTROPIC LAMINATED DAMPED STRUCTURES[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 96-99.
    [8]SUN Yan, LI Hongyun, XIE Jun. NEW NUMERICAL METHOD FOR SURFACE WAVE PROPAGATION IN MULTILAYER ANISOTROPY MATERIALS[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 165-169.
    [9]Ren Junguo. EXACT ANALYSIS OF DEFORMATION OF ANISOTROPIC LAMINATED CIRCULAR CYLINDRICAL SHELLS UNDER AXISYMMETRIC LOADING[J]. Acta Materiae Compositae Sinica, 1993, 10(4): 23-31.
    [10]Cai Min, Wang Youcheng. ANALYSIS OF ANISOTROPIC THIN SHALLOW SHELLS BY INTEGRAL EQUATION METHOD[J]. Acta Materiae Compositae Sinica, 1990, 7(3): 69-74.

Catalog

    Article Metrics

    Article views (1897) PDF downloads (880) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return