Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004
Citation: LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004

A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity

doi: 10.13801/j.cnki.fhclxb.20230222.004
Funds:  National Natural Science Foundation of China (21573003); Natural Science Foundation of Jilin Province (20140101118JC)
  • Received Date: 2022-12-13
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-02-22
  • Publish Date: 2023-11-01
  • Photocatalytic reduction technology of CO2 can not only achieve energy saving and emission reduction, but also alleviate energy shortage, which is in line with today's concept of green and sustainable development. By employing electrospun TiO2 nanofibers as substrate, bismuth-rich Bi4O5Br2/TiO2 composite fibers were prepared combining with in-situ hydrothermal reduction method. The composition, morphology and photoelectric properties were characterized by XRD, SEM, HRTEM, XPS, UV-Vis and carbon adsorption. The results show that the band gap of Bi4O5Br2/TiO2 composite fibers becomes width, there is obvious absorption in the visible light band, and the reduction ability of photogenerated electrons is enhanced. Bi4O5Br2/TiO2 composite fibers can reduce CO2 to CH4 and CO, while the enrichment of the metal Bi can not only improve the adsorption capacity of the catalyst for acidic CO2 molecules and enhance the conversion efficiency, but also change the photocatalytic reaction path and generate alcohol products such as CH3OH. The CH4, CO and CH3OH yields of the optimized photocatalyst Bi@Bi4O5Br2/TiO2 composite fibers were 3.87, 1.06 and 0.32 μmol·h−1·g−1, respectively, after simulated sunlight irradiation 3 h. This work provides new opportunities for exploring high-efficiency CO2 photoreduction catalysts.

     

  • loading
  • [1]
    HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie,2022,61(17):202200802.
    [2]
    CHENG L, YUE X Y, FAN J J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions[J]. Advanced Materials,2022,34(27):2200929. doi: 10.1002/adma.202200929
    [3]
    FENG X H, PAN F P, TRAN B Z, et al. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles[J]. Catalysis Today,2020,339:328-336. doi: 10.1016/j.cattod.2019.03.012
    [4]
    LOW J X, CHENG B, YU J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review[J]. Applied Surface Science,2017,392:658-686. doi: 10.1016/j.apsusc.2016.09.093
    [5]
    JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature,2020,586(7830):549-554. doi: 10.1038/s41586-020-2738-2
    [6]
    MA Y J, YI X X, WANG S L, et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2[J]. Nature Communications,2022,13(1):1400. doi: 10.1038/s41467-021-27699-2
    [7]
    LI C G, ZHAO J G, XIONG Z, et al. Selective photocatalytic reduction of CO2 into CH4 by Pt and Cu co-modified TiO2[J]. Clean Coal Technology,2020,26(4):162-167.
    [8]
    MENG A Y, WU S, CHENG B, et al. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance[J]. Journal of Materials Chemistry A,2018,6(11):4729-4736. doi: 10.1039/C7TA10073F
    [9]
    LI Y X, HUI D P, SUN Y Q, et al. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators[J]. Nature Communications,2021,12(1):123. doi: 10.1038/s41467-020-20444-1
    [10]
    PAN F P, XIANG X M, DU Z C, et al. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating[J]. Applied Catalysis B: Environmental, 2020, 260: 118189.
    [11]
    陈子尚, 梁小平, 樊小伟, 等. Ce-La-Ag 共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7):515-522.

    CHEN Z S, LIANG X P, FAN X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst[J]. Chinese Journal of Materials Research,2019,33(7):515-522(in Chinese).
    [12]
    ZHOU C X, JIANG C P, WANG R L, et al. SPR-effect enhanced semimetallic Bi0/p-BiOI/n-CdS photocatalyst with spatially isolated active sites and improved carrier transfer kinetics for H2 evolution[J]. Industrial & Engineering Chemistry Research,2020,59(17):8183-8194.
    [13]
    WEI Z D, LIU J Y, FANG W J, et al. Photocatalytic hydrogen energy evolution from antibiotic wastewater via metallic Bi nanosphere doped g-C3N4: Performances and mechanisms[J]. Catalysis Science & Technology,2019,9(19):5279-5291.
    [14]
    SHI X, DONG X A, HE Y, et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction[J]. ACS Catalysis,2022,12(7):3965-3973. doi: 10.1021/acscatal.2c00157
    [15]
    ZHANG L L, YUE X P, LIU J X, et al. Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation[J]. Separation and Purification Technology,2020,231:115917. doi: 10.1016/j.seppur.2019.115917
    [16]
    DONG X A, CUI Z H, SHI X, et al. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation[J]. Angewandte Chemie International Edition,2022,61(19):202200937.
    [17]
    LI D S, ZHU B C, SUN Z G, et al. Construction of UiO-66/Bi4O5Br2 type-II heterojunction to boost charge transfer for promoting photocatalytic CO2 reduction performance[J]. Frontiers in Chemistry,2021,9:804204. doi: 10.3389/fchem.2021.804204
    [18]
    JIN X L, LYU C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955. doi: 10.1016/j.nanoen.2019.103955
    [19]
    LI Y J, CAO T P, MEI Z M, et al. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. Journal of Physics and Chemistry of Solids,2020,142:109457. doi: 10.1016/j.jpcs.2020.109457
    [20]
    申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuSBi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [21]
    YAN J Q, WU G J, GUAN N J, et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Physical Chemistry Chemi-cal Physics,2013,15(26):10978-10988. doi: 10.1039/c3cp50927c
    [22]
    HE Q, NI Y H, YE S Y. Heterostructured Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Advances,2017,7(43):27089-27099. doi: 10.1039/C7RA02760E
    [23]
    XU H, YAN B, ZHANG K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Science,2017,416:191-199. doi: 10.1016/j.apsusc.2017.04.160
    [24]
    QIU F Z, LI W J, WANG F Z, et al. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light[J]. Journal of Colloid and Interface Science,2017,493:1-9. doi: 10.1016/j.jcis.2016.12.066
    [25]
    SU C Y, LIU L, ZHANG M Y, et al. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach[J]. CrystEngComm,2012,14(11):3989-3999. doi: 10.1039/c2ce25161b
    [26]
    JI M X, DI J, GE Y P, et al. 2D-2D stacking of graphene-like g-C3N4/ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal[J]. Applied Surface Science,2017,413:372-380. doi: 10.1016/j.apsusc.2017.03.287
    [27]
    CUI Z K, ZHANG Y G, LI S L, et al. Preparation and photocatalytic performance of Bi nanoparticles by microwave-assisted method using ascorbic acid as reducing agent[J]. Catalysis Communications,2015,72:97-100. doi: 10.1016/j.catcom.2015.09.024
    [28]
    WANG M, HAN Q T, ZHOU Y, et al. TiO2 nanosheet-anchoring Au nanoplates: High-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction[J]. RSC Advances,2016,6(85):81510-81516. doi: 10.1039/C6RA14821B
    [29]
    YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale,2020,12(13):7000-7010. doi: 10.1039/C9NR09743K
    [30]
    XU M, WU H, TANG Y W, et al. One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Microporous and Mesoporous Materials,2020,309:110539. doi: 10.1016/j.micromeso.2020.110539
    [31]
    XU M, HU X T, WANG J Y, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis,2019,377:652-661. doi: 10.1016/j.jcat.2019.08.010
    [32]
    FENG W, WU J A. Photocatalytic reduction of CO2 under visible light over Fe/TiO2/rGO nanocomposites by one-step hydrothermal synthesis[J]. Earth and Environmental Science,2020,513:012012.
    [33]
    LIU Y, GUO J G, WANG Y, et al. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO[J]. Green Energy & Environment,2021,6(2):244-252. doi: 10.1016/j.gee.2020.04.014
    [34]
    GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Jour-nal of CO2 Utilization,2019,33:233-241. doi: 10.1016/j.jcou.2019.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (467) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return