Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHOU Qiang, CHEN Yan, WANG Xiaoyu, et al. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001
Citation: ZHOU Qiang, CHEN Yan, WANG Xiaoyu, et al. Chip formation and surface damage in orthogonal cutting of plain-woven CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5371-5385. doi: 10.13801/j.cnki.fhclxb.20221214.001

Chip formation and surface damage in orthogonal cutting of plain-woven CFRP

doi: 10.13801/j.cnki.fhclxb.20221214.001
Funds:  National Natural Science Foundation of China (51875284)
  • Received Date: 2022-10-11
  • Accepted Date: 2022-12-02
  • Rev Recd Date: 2022-11-18
  • Available Online: 2022-12-16
  • Publish Date: 2023-09-15
  • Plain-woven carbon fiber-reinforced plastic (PW-CFRP) shows high damage tolerance characteristics and is widely used in the aerospace field. However, PW-CFRP is a multi-scale composite material, and the traditional micro and macro scales cannot study its cutting mechanism well. Therefore, this paper uses mesoscopic cutting simulation methods to study its chip formation mechanism. In this paper, a mesoscopic three-dimensional orthogonal cutting simulation model was established according to the geometric structure characteristics of PW-CFRP, and the orthogonal cutting experiment was carried out to verify the simulation model. The material removal mechanism of PW-CFRP with different fiber braiding directions in cutting process was studied. The results show that the maximum relative error between the simulation and experimental results of cutting force and surface damage is less than 15% under the same process parameters, and the reliability of the simulation model is verified. The maximum damage depth of fiber bundles in each fiber orientation is 0°<45°<90°<135°. The plain-woven structure of warp and fill weaving has inhibitory effect on the machining damage. The support constraint between adjacent fiber bundles hinders the damage expansion, and its maximum processing damage depth will not exceed the maximum width of the fiber bundle section. The thickness of the matrix layer near the fiber is an important factor in the formation of processing damage. The resin-rich area has a good supporting effect on the fiber and can effectively suppress the damage. The resin-starved area has weak support for the fiber, and the damage is easy to expand here, making the surface damage of the material arc-shaped distribution.

     

  • loading
  • [1]
    陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002

    CHEN Yan, GE Ende, FU Yucan, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002
    [2]
    林刚. 碳纤维产业“聚”变发展:2020全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 32(5):27-49.

    LIN Gang. The development of carbon fiber industry-2020 global carbon fiber composite market report[J]. Textile Science Research,2021,32(5):27-49(in Chinese).
    [3]
    FEITO N, DIAZ-ÁLVAREZ A, CANTERO J L, et al. Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs[J]. Journal of Reinforced Plastics and Composites,2016,35(1):33-55. doi: 10.1177/0731684415612931
    [4]
    GAO Z Y, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures,2021,263:113685. doi: 10.1016/j.compstruct.2021.113685
    [5]
    ONAL L, ADANUR S. Modeling of elastic, thermal, and strength/failure analysis of two-dimensional woven composites—A review[J]. Applied Mechanics Reviews,2007,60(1):37-49. doi: 10.1115/1.2375143
    [6]
    杨晓文. 基于编织角动态变化的2D编织CFRP力学性能仿真研究[D]. 长春: 吉林大学, 2022.

    YANG Xiaowen. Simulation research on mechanical properties of 2D braided CFRP based on dynamic change of braiding angle[D]. Changchun: Jilin University, 2022(in Chinese).
    [7]
    ZHAO Q L, WANG W H, LIU Y T, et al. Multiscale modeling framework to predict the low-velocity impact and compression after impact behaviors of plain woven CFRP composites[J]. Composite Structures,2022,299:116090. doi: 10.1016/j.compstruct.2022.116090
    [8]
    ZHANG X J, SHI Y C, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates[J]. Composites Part B: Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [9]
    张铁纯, 杨晨晨, 王轩, 等. 平纹编织复合材料层合板静态压缩与压-压疲劳性能[J]. 航空材料学报, 2022, 42(2):64-72. doi: 10.11868/j.issn.1005-5053.2021.000106

    ZHANG Tiechun, YANG Chenchen, WANG Xuan, et al. Static compression and compression-compression fatigue properties of plain woven composite laminates[J]. Journal of Aeronautical Materials,2022,42(2):64-72(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000106
    [10]
    SIDDIQUE A, SUN B Z, GU B H. Structural influences of two-dimensional and three-dimensional carbon/epoxy composites on mode I fracture toughness behaviors with rate effects on damage evolution[J]. Journal of Industrial Textiles,2020,50(1):23-45. doi: 10.1177/1528083718819871
    [11]
    KING M J, JEARANAISILAWONG P, SOCRATE S. A continuum constitutive model for the mechanical behavior of woven fabrics[J]. International Journal of Solids and Structures,2005,42(13):3867-3896. doi: 10.1016/j.ijsolstr.2004.10.030
    [12]
    RATTAN R, BIJWE J, FAHIM M. Influence of weave of carbon fabric on low amplitude oscillating wear performance of polyetherimide composites[J]. Wear,2007,262(5-6):727-735. doi: 10.1016/j.wear.2006.08.005
    [13]
    NAIK N K, REDDY K S, MEDURI S, et al. Interlaminar fracture characterization for plain weave fabric composites[J]. Journal of Materials Science,2002,37(14):2983-2987. doi: 10.1023/A:1016025232102
    [14]
    王冬峣, 赫晓东, 刘文博, 等. 二维编织复合材料在正交切削中的切削力和加工表面质量研究[J]. 玻璃钢/复合材料, 2017(12):77-82. doi: 10.3969/j.issn.1003-0999.2017.12.014

    WANG Dongyao, HE Xiaodong, LIU Wenbo, et al. Study on machining forces and machined surface quality of plane woven-fabric CFRP in orthogonal cutting experiment[J]. Fiber Reinforced Plastics/Composites,2017(12):77-82(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.014
    [15]
    LIU S N, WU D, ZHAO J, et al. The material removal mechanism in orthogonal cutting of woven AFRP[J]. Journal of Materials Science,2022,57(34):16301-16316. doi: 10.1007/s10853-022-07422-2
    [16]
    SU F, YUAN J T, SUN F J, et al. Modeling and simulation of milling forces in milling plain woven carbon fiber-reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9):4141-4152.
    [17]
    ZHANG D Z, WANG H, BURKS A R, et al. Delamination in rotary ultrasonic machining of CFRP composites: Finite element analysis and experimental implementation[J]. The International Journal of Advanced Manufacturing Technology,2020,107(9-10):3847-3858. doi: 10.1007/s00170-020-05310-0
    [18]
    WONG I M M, TAN C L, AZMI A I, et al. Evaluations of mechanical properties and residual strength of drilled glass fiber reinforced polymer (GFRP) composites[J]. Applied Mechanics and Materials,2014,660:270-274.
    [19]
    周井文, 黄久超, 杨叶, 等. 单向铺层与织物结构CFRP端铣加工表面质量对比分析[J]. 工具技术, 2021, 55(8):49-52. doi: 10.3969/j.issn.1000-7008.2021.08.007

    ZHOU Jingwen, HUANG Jiuchao, YANG Ye, et al. Analysis of surface integrity during end milling of unidirectional lamination and woven fabric structure CFRP[J]. Tool Engineering,2021,55(8):49-52(in Chinese). doi: 10.3969/j.issn.1000-7008.2021.08.007
    [20]
    HINTZE W, CORDES M, KOERKEL G. Influence of weave structure on delamination when milling CFRP[J]. Journal of Materials Processing Technology,2015,216:199-205. doi: 10.1016/j.jmatprotec.2014.09.004
    [21]
    MARIATTI M, NASIR M, ISMAIL H. Effect of sample cutting direction on mechanical properties of woven thermoplastic prepreg[J]. Polymer Testing,2000,19(6):617-624. doi: 10.1016/S0142-9418(99)00032-X
    [22]
    LI H N, WANG J P, WU C Q, et al. Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single-and multiple-pass strategies[J]. Composites Part B: Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774
    [23]
    李树健, 周永超, 陈蓉, 等. 考虑孔隙缺陷的CFRP微观切削仿真与实验研究[J]. 复合材料学报, 2023, 40(1): 625-636.

    LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 625-636(in Chinese).
    [24]
    苏飞. 碳纤维增强复合材料切削加工技术及其应用研究[D]. 南京: 南京理工大学, 2015.

    SU Fei. The cutting process technology and its application of carbon fiber-reinforced plastic[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [25]
    邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析[D]. 南昌: 南昌大学, 2018.

    SHAO Bing. The mesomechanical analysis of stresses near central hole in big carbon tow plain-woven composite[D]. Nanchang: Nanchang University, 2018(in Chinese).
    [26]
    周井文, 陈燕, 傅玉灿, 等. 纤维切削角对CFRP加工缺陷的影响规律[J]. 哈尔滨工业大学学报, 2015, 47(7):110-116. doi: 10.11918/j.issn.0367-6234.2015.07.018

    ZHOU Jingwen, CHEN Yan, FU Yucan, et al. Influence of fiber cutting angle on the machining defects during slotting of CFRP[J]. Journal of Harbin Institute of Technology,2015,47(7):110-116(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.07.018
    [27]
    张勋, 陈燕, 徐九华, 等. 大厚径碳纤维复合材料三维钻削有限元仿真及试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(2):53-60. doi: 10.13394/j.cnki.jgszz.2020.2.0010

    ZHANG Xun, CHEN Yan, XU Jiuhua, et al. Finite element simulation of and experimental study on three-dimensional drilling of large diameter carbon fiber composites[J]. Diamond & Abrasives Engineering,2020,40(2):53-60(in Chinese). doi: 10.13394/j.cnki.jgszz.2020.2.0010
    [28]
    SANTIUSTE C, SOLDANI X, MIGUÉLEZ M H. Machining FEM model of long fiber composites for aeronautical components[J]. Composite Structures,2010,92(3):691-698. doi: 10.1016/j.compstruct.2009.09.021
    [29]
    齐振超, 刘书暖, 程晖, 等. 基于三维多相有限元的CFRP细观切削机制研究[J]. 机械工程学报, 2016, 52(15):170-176. doi: 10.3901/JME.2016.15.170

    QI Zhenchao, LIU Shunuan, CHENG Hui, et al. Research on the mesoscopic cutting mechanism of CFRP based on three-dimensional multiphase finite element models[J]. Journal of Mechanical Engineering,2016,52(15):170-176(in Chinese). doi: 10.3901/JME.2016.15.170
    [30]
    LIU Y, LI Q N, QI Z C, et al. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer[J]. Composite Structures,2021,278:114710. doi: 10.1016/j.compstruct.2021.114710
    [31]
    杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1):132-139. doi: 10.13801/j.cnki.fhclxb.20190324.002

    YANG Guangmeng, WAN Xiaopeng, HOU Chi. Damage behavior of plain woven composites considering undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica,2020,37(1):132-139(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190324.002
    [32]
    BEDNARCYK B A, STIER B, SIMON J W, et al. Meso- and micro-scale modeling of damage in plain weave composites[J]. Composite Structures,2015,121:258-270. doi: 10.1016/j.compstruct.2014.11.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (695) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return