Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003
Citation: LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003

Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns

doi: 10.13801/j.cnki.fhclxb.20220623.003
Funds:  National Key Basic Research Program of China (973 Program) (2015 CB655101); Natural Science Foundation of Shandong Province of China (ZR2021 ME002)
  • Received Date: 2022-04-22
  • Accepted Date: 2022-06-14
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-24
  • Publish Date: 2023-04-15
  • In order to study the feasibility of replacing steel tubes of concrete filled carbon fiber-reinforced polymer (CFRP)-steel tube columns with ultra high performance concrete (UHPC) tubes, a novel concrete-filled CFRP-UHPC tube (CFFUT) column was proposed. The CFFUT column consists of a combination of UHPC precast tubes externally wrapped with CFRP and an internal cast-in-place filled normal concrete. Ten CFFUT columns, including two contrast columns, were tested under monotonic axial compression, and the influences of UHPC tube thickness, CFRP layer numbers and filled concrete strength were investigated. The results show that CFRP-UHPC tube can effectively improve the bearing capacity, deformation capacity and ductility of composite columns. The failure of CFFUT column is mainly manifested as the collapse of filled concrete, cracking of UHPC tube and rupture of CFRP. The integrity of CFFUT column is good after failure, and it belongs to ductility failure mode. The ultimate bearing capacity of CFFUT column is positively correlated with the thickness of UHPC tube, the number of CFRP layers and the strength of filled concrete. Ductility factor increases with the increase of UHPC tube thickness and CFRP layer number, and increases first and then decreases with the increase of filled concrete strength. The interface strengthening mechanism of CFFUT column is revealed. The ultimate bearing capacity of CFFUT columns is 93.9%-203.5% higher than that of normal concrete columns with the same section, and the ultimate bearing capacity of CFFUT columns is equivalent to that of concrete-filled CFRP- steel tube columns to a certain extent. The theoretical calculation model of ultimate bearing capacity is established and verified by finite element analysis. The calculated and simulated values are in good agreement with the test results.

     

  • loading
  • [1]
    XIAO Y, HE W H, MAO X Y, et al. Confinement design of CFT columns for improved seismic performance[C]//Proceedings of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003). Taipei, 2003: 217-226.
    [2]
    王庆利, 赵颖华, 顾威. 圆截面CFRP-钢复合管混凝土结构的研究[J]. 沈阳建筑工程学院学报(自然科学版), 2003, 19(4):272-274.

    WANG Qingli, ZHAO Yinghua, GU Wei. Presumption on the concrete filled circular CFRP-steel composite tube structures[J]. Journal of Shenyang Jianzhu University (Natural Science),2003,19(4):272-274(in Chinese).
    [3]
    XIAO Y, HE W H, CHOI K K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering,2005,131(3):488-497. doi: 10.1061/(ASCE)0733-9445(2005)131:3(488)
    [4]
    PARK J W, HONG Y K, HONG G S, et al. Design formulas of concrete filled circular steel tubes reinforced by carbon fiber reinforced plastic sheets[J]. Procedia Engineering,2011,14(1):2916-2922.
    [5]
    SUNDARRAJA M C, PRABHU G G. Experimental study on CFST members strengthened by CFRP composites under compression[J]. Journal of Constructional Steel Research,2012,72:75-83. doi: 10.1016/j.jcsr.2011.10.014
    [6]
    TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. doi: 10.1260/136943307780150814
    [7]
    OSTROWSKI K, DUDEK M, SADOWSKI L. Compressive behaviour of concrete-filled carbon fiber-reinforced polymer steel composite tube columns made of high performance concrete[J]. Composite Structures,2020,234:111668. doi: 10.1016/j.compstruct.2019.111668
    [8]
    郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131. doi: 10.14006/j.jzjgxb.2019.05.012

    GUO Ying, XU Tianxiang, LIU Jiepeng. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columns[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese). doi: 10.14006/j.jzjgxb.2019.05.012
    [9]
    焦楚杰, 李松, 崔力仕, 等. CFRP约束钢管-活性粉末混凝土短柱轴压性能[J]. 复合材料学报, 2021, 38(2):439-448. doi: 10.13801/j.cnki.fhclxb.20200608.003

    JIAO Chujie, LI Song, CUI Lishi, et al. Axial compression behaviour of CFRP confined reactive power concrete filled steel tube stub columns[J]. Acta Materiae Compositae Sinica,2021,38(2):439-448(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200608.003
    [10]
    TOUTANJI H. Design equations for concrete columns confined with hybrid composite materials[J]. Advanced Composite Materials,2001,10(2-3):127-138. doi: 10.1163/156855101753396609
    [11]
    于峰. PVC-FRP管混凝土柱力学性能的试验研究与理论分析[D]. 西安: 西安建筑科技大学, 2007.

    YU Feng. Experimental study and theoretical analysis on mechanical behavior of PVC-FRP confined concrete column[D]. Xi'an: Xi'an University of Architecture and Technology, 2007(in Chinese).
    [12]
    JIANG S F, MA S L, WU Z Q. Experimental study and theoretical analysis on slender concrete-filled CFRP-PVC tubular columns[J]. Construction and Building Materials,2014,53:475-487. doi: 10.1016/j.conbuildmat.2013.11.089
    [13]
    FAKHARIFAR M, CHEN G D. Compressive behavior of FRP-confined concrete-filled PVC tubular columns[J]. Composite Structures,2016,141:91-109. doi: 10.1016/j.compstruct.2016.01.004
    [14]
    GAO C, HUANG L, YAN L B, et al. Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement[J]. Composites Part B: Engineering,2019,162:178-197. doi: 10.1016/j.compositesb.2018.10.102
    [15]
    ZHANG H Q, HADI M N S. Geogrid-confined pervious geopolymer concrete piles with FRP-PVC confined concrete core: Concept and behaviour[J]. Construction and Building Materials,2019,211:12-25. doi: 10.1016/j.conbuildmat.2019.03.231
    [16]
    李晓飞, 黄紫青, 蒋治鑫, 等. 轴压下CFRP-钢管约束混凝土柱试验研究[J]. 广西大学学报(自然科学版), 2019, 44(1):68-76.

    LI Xiaofei, HUANG Ziqing, JIANG Zhixin, et al. Experimental study on axial compression of CFRP-steel tube confined concrete short column[J]. Journal of Guangxi University (Natural Science Edition),2019,44(1):68-76(in Chinese).
    [17]
    赵筠, 师海霞, 路新瀛. 超高性能混凝土基本性能与试验方法[M]. 北京: 中国建材工业出版社, 2019.

    ZHAO Jun, SHI Haixia, LU Xinying. Fundamental characteristics and test methods of ultra-high performance concrete[M]. Beijing: China Building Materials Press, 2019(in Chinese).
    [18]
    SUN C S, BABARINDE O, FARZANA N, et al. Use of UHPC jackets in coastal bridge piles[C]//The 2nd International Interactive Symposium on Ultra-high Performance Concrete. Albany, 2019.
    [19]
    XIE J, FU Q, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials,2019,204:643-658. doi: 10.1016/j.conbuildmat.2019.01.220
    [20]
    HADI M N S, ALGBURI A H M, SHEIKH M N, et al. Axial and flexural behaviour of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fibre reinforced polymer wrapping[J]. Construction and Building Materials,2018,172:717-727. doi: 10.1016/j.conbuildmat.2018.03.196
    [21]
    吴香国. 基于耐久性的超高性能纤维改性混凝土叠合墩柱设计概念[J]. 华北水利水电学院学报, 2012, 33(6):73-77.

    WU Xiangguo. Design conception of ultra-high-performance fiber reinforced concrete hybrid pier with durability consideration[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2012,33(6):73-77(in Chinese).
    [22]
    林上顺, 黄卿维, 陈宝春, 等. 跨海大桥U-RC组合桥墩设计[J]. 交通运输工程学报, 2017, 17(4):55-65. doi: 10.3969/j.issn.1671-1637.2017.04.006

    LIN Shangshun, HUANG Qinwei, CHEN Baochun, et al. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering,2017,17(4):55-65(in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.006
    [23]
    杨医博, 杨凯越, 吴志浩, 等. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究[J]. 材料导报, 2017, 31(12):120-124. doi: 10.11896/j.issn.1005-023X.2017.023.017

    YANG Yibo, YANG Kaiyue, WU Zhihao, et al. An experimental study on the influence of reinforced ultra-high performance concrete permanent template to short column's mechanical property[J]. Materials Reports,2017,31(12):120-124(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.017
    [24]
    单波, 刘志, 肖岩, 等. RPC预制管混凝土组合柱组合效应试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(3):88-96. doi: 10.16339/j.cnki.hdxbzkb.2017.03.011

    SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental research on composite action of concrete-filled RPC tube under axial load[J]. Journal of Hunan University (Natural Sciences),2017,44(3):88-96(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2017.03.011
    [25]
    TIAN H W, ZHOU Z, ZHANG Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork[J]. Engineering Structures,2020,210:110403. doi: 10.1016/j.engstruct.2020.110403
    [26]
    WILLE K, EI-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [27]
    王俊颜, 郭君渊, 肖汝诚, 等. 高应变强化超高性能混凝土的裂缝控制机理和研究[J]. 土木工程学报, 2017, 50(11):10-17.

    WANG Junyan, GUO Junyuan, XIAO Rucheng, et al. Study on crack control mechanism of strain-hardening ultra-high performance concrete[J]. China Civil Engineering Journal,2017,50(11):10-17(in Chinese).
    [28]
    王庆利. CFRP-钢管混凝土[M]. 北京: 科学出版社, 2017.

    WANG Qingli. Concrete filled CFRP-Steel tube[M]. Beijing: Science Press, 2017(in Chinese).
    [29]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [30]
    中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CBMF 37—2018/T/CCPA 7—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Fundamental characteristics and test methods of ultra-high performance concrete: T/CBMF 37—2018/T/CCPA 7—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [31]
    中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146: 2003[S]. 北京: 中国计划出版社, 2003.

    China Engineering Construction Standardization Association. Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate: CECS 146: 2003[S]. Beijing: China Planning Press, 2003(in Chinese).
    [32]
    CUI C, SHEIKH S A. Experimental study of normal and high strength concrete confined with fiber reinforced polymers[J]. Journal of Composites for Construction,2010,14(5):553-561. doi: 10.1061/(ASCE)CC.1943-5614.0000116
    [33]
    AALETI S, SRITHARAN S. Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application[J]. Journal of Bridge Engineering,2019,24(6):04019041. doi: 10.1061/(ASCE)BE.1943-5592.0001404
    [34]
    ZHANG Y, ZHU P, LIAO Z Q, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials,2020,235:117431. doi: 10.1016/j.conbuildmat.2019.117431
    [35]
    FENG S, XIAO H G, LIU R, et al. The bond properties between ultra-high-performance concrete and normal strength concrete substrate: Bond macro-performance and overlay transition zone microstructure[J]. Cement and Concrete Composites,2022,128:104436. doi: 10.1016/j.cemconcomp.2022.104436
    [36]
    朱和国, 张爱文. 复合材料原理[M]. 北京: 国防工业出版社, 2013.

    ZHU Heguo, ZHANG Aiwen. The fundamental principles of composites[M]. Beijing: National Defense Industry Press, 2013(in Chinese).
    [37]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (1043) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return