Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Qingmao, JIN Dongsheng, GAN jian, et al. Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002
Citation: ZHANG Qingmao, JIN Dongsheng, GAN jian, et al. Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002

Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites

doi: 10.13801/j.cnki.fhclxb.20210816.002
  • Received Date: 2021-05-18
  • Accepted Date: 2021-07-23
  • Rev Recd Date: 2021-06-25
  • Available Online: 2021-08-16
  • Publish Date: 2022-06-01
  • In view of the structural deformation, weight and high-temperature requirements in the application of titanium engine compartment rear structure of a certain aircraft, composite structural design was carried out instead of titanium alloy for aircraft engine compartment rear structure, taking the AC729RTM polyimide composite with temperature resistance of 350℃ as design material. The finite element (FE) model of composite engine compartment rear structure was generated to perform parameter analysis and reasonable structural design parameters were obtained. The composite engine compartment rear structure was fabricated by resin transfer molding process (RTM). Finally, verification and evaluation were carried out from static strength test, structural deformation and weight. The results show that the internal quality and appearance of polyimide composite engine compartment rear structure are in good condition except for pores of small areas (porosity<2%) through non-destructive inspection. There are no obvious damages in engine compartment rear structure except for debonding of small areas through verification of static strength test, and satisfied the requirement of room temperament strength. The shape deviation of composite engine compartment rear structure is controlled in –0.808-0.664 mm and is better than titanium alloy structural. Compared with titanium alloy structural, the mass is reduced by 27.5%, achieving good benefits.

     

  • loading
  • [1]
    陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004: 1-3.

    CHEN Xiangbao. Handbook of polymer matrix composite[M]. Beijing: Chemical Industry Press, 2004: 1-3(in Chinese).
    [2]
    邢丽英, 包建文, 礼嵩明. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming. Development status and facting challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [3]
    杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. doi: 10.3321/j.issn:1000-6893.2008.03.010

    YANG Naibin. Composite structures for new gen eration large commercial[J]. Aeronautica Sinica,2008,29(3):596-604(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.010
    [4]
    HUNTER A B. Quality assurance of PMR-15[J]. Inter SAMPE Symposium and Exhibition,1987:375-389.
    [5]
    MICHAEL A M, MARY B, MADOR, et al. PMR polyimides with enhanced for high temperature application[C]. Inter SAMPE Symposium and Exhibition. Long Beach, California, 2001: 497-509.
    [6]
    张朋, 周立正, 包建文, 等. 耐350℃RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.

    ZHANG Peng, ZHOU Lizheng, BAO Jianwen. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica,2014,31(2):345-352(in Chinese).
    [7]
    GHOSE S, GANO R J, WARSON K A. Phenylethynyl terminated imide (PETI) composites made by high temperature VARTM[C]//14th European Conference on Composite Materials, Budapest, 2010: 306-315.
    [8]
    THOMPSON C M, CONNELL J W, HERG P. Adhesive and composite properties of a new Phenylethynyl terminated imide[C]//47th International SAMPE Symposium, Long Beach, California, 2002: 521-527.
    [9]
    HERGEN P M, SMITH JR J. Chemistry and properties of imide oligomers endcapped with phenylethy-nylphthalic anhydrides[J]. Polymer,1994,35(22):335-347.
    [10]
    YOKOTA R. Recent trends and space applications of polyimides[J]. Journal of Photopolymer Science and Technol-ogy,1999,12(2):209-216. doi: 10.2494/photopolymer.12.209
    [11]
    HERGENROTHER P M. The use, design, synthesis, and properties of high performance/high temperature polymers: An overview[J]. High Performance Polymers,2003,15(1):3-45. doi: 10.1177/095400830301500101
    [12]
    PARAKALAN K, LOU J Z, JAG S, et al. Characterization of fourth-generation high-temperature discontinuous fiber molding compounds[J]. International Journal of Polymer Analysis and Characterization,2009,14:588-599. doi: 10.1080/10236660903225452
    [13]
    LINCOLN J E, MORGAN R J, CURLISS D B, et al. Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J]. Polymer Composites, 2008, 29(6): 585–596.
    [14]
    YANG Jintian, JIN Bin, HUANG Wei, et al. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride[J]. Chinese Journal of Polyer Science,2007,25(4):409-417. doi: 10.1142/S025676790700228X
    [15]
    DING Mengxian. Isomeric polyimides[J]. Progress in Polymer Science,2007,32:623-668. doi: 10.1016/j.progpolymsci.2007.01.007
    [16]
    KASH L Mittal. Polyimides and other high-temperature polymers[M]. Netherlands: VSP/Brill, 2009: 19-31.
    [17]
    MEADOR M A. Recent advances in the development of processable high temperature polymes[J]. Annual Review of Materials Science,1998,28:599-630. doi: 10.1146/annurev.matsci.28.1.599
    [18]
    LINCON J E, HOUNT S L, BROWNT J. Aging durability and high temperature mechanical performance of P2SI 900HT composite materials[C]. 39th International SAMPE Technical Conference, Cincinnati, 2007.
    [19]
    LINCOLN J E, HOUT S, FLAHERTY K, et al. High tempera-ture organic/inorganic addition cure polyimide compo-sites, Part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science, 2008, 107(6): 3557–3567.
    [20]
    DONGHWAN C, GYEOMO Y. Fluorescence characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI blends[J]. Fibers and Polymers,2002,3(2):60-67. doi: 10.1007/BF02875401
    [21]
    CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resins: Laminate properties of PETI-298 and PETI-330[J]. High Performance Polymers,2003,15(4):375. doi: 10.1177/09540083030154001
    [22]
    CONNELL J W, SMITH J G, HERGENTHER P M, et al. High temperature transfer molding resin: Preliminary compo-site properties of PETI-375[C]//International SAMPE Symposium and Exhibition, Long Beach, California, 2004(5): 16-20.
    [23]
    包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32(6):3-12.

    BAO Jianwen, CHEN Xiangbao. Advance in high tempera-ture polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials,2012,32(6):3-12(in Chinese).
    [24]
    王震, 杨慧丽, 益小苏. 苯炔基封端的联苯型聚酰亚胺复合材料[J]. 航空材料学报, 2006, 23(3):1-4. doi: 10.3969/j.issn.1005-5053.2006.03.001

    WANG Zhen, YANG Huili, YI Xiaosu. Biophenyl poly-imide composite endcapped with phenylethynyl[J]. Jour-nal of Aeronautical Materials,2006,23(3):1-4(in Chinese). doi: 10.3969/j.issn.1005-5053.2006.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (761) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return