Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001
Citation: LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168. doi: 10.13801/j.cnki.fhclxb.20220512.001

Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction

doi: 10.13801/j.cnki.fhclxb.20220512.001
Funds:  Taishan Scholar Program of Shandong Province (ts201712045)
  • Received Date: 2022-04-15
  • Accepted Date: 2022-05-08
  • Rev Recd Date: 2022-05-05
  • Available Online: 2022-05-12
  • Publish Date: 2023-04-15
  • The preparation of electrocatalyst for high efficiency hydrogen evolution reaction (HER) is of great significance to the large-scale promotion of hydrogen energy. In this paper, using sodium carboxymethyl cellulose (CMC-NA) and RuCl3 as raw materials, Ru-CMC-Na hydrogel was prepared by the coordination of Ru ions with CMC-Na in solution. Then, porous carbon supported Ru single atom and Ru nanocluster catalyst RuSA+NC/C-2 was prepared by freeze-drying, high temperature annealing and pickling. The catalyst RuSA+NC/C-2 shows excellent HER activity and stability in both acidic and alkaline electrolytes, reaching 10 mA·cm−2 current density at 20 mV and 23 mV, respectively. After 12 h chronoamperometry test, the activity of RuSA+NC/C-2 shows no obvious attenuation. The mass activity of RuSA+NC/C-2 is 5.8 times that of commercial Pt/C when the overpotential is 0.05 V in 1 mol/L KOH electrolyte. The physical characterization of RuSA+NC/C-2 catalyst shows that the porous structure and large specific surface area of RuSA+NC/C-2 catalyst can expose more active sites. Ru single atom and Ru nanocluster structure improve the utilization rate of Ru atom. XPS analysis shows that there is a strong interaction between Ru and carbon support, resulting in the formation of electron-deficient Ru, thus improving HER activity of the catalyst.

     

  • loading
  • [1]
    ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews,2015,44(15):5148-5180. doi: 10.1039/C4CS00448E
    [2]
    SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science,2011,334(6061):1383-1385. doi: 10.1126/science.1212858
    [3]
    JIANG W J, TANG T, ZHANG Y, et al. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Accounts of Chemical Research,2020,53(6):1111-1123. doi: 10.1021/acs.accounts.0c00127
    [4]
    姚素薇, 李贺, 张卫国, 等. AC/ Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC ( activated char) /Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015
    [5]
    吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4):1667-1677.

    WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(4):1667-1677(in Chinese).
    [6]
    JIANG X, JANG H, LIU S, et al. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution[J]. Angewandte Chemie International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411
    [7]
    ZHANG B, YANG F, LIU X, et al. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting[J]. Applied Catalysis B: Environmental,2021,298:120494-120504. doi: 10.1016/j.apcatb.2021.120494
    [8]
    LIANG J, LIU Q, LI T, et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis[J]. Green Chemistry,2021,23(8):2834-2867. doi: 10.1039/D0GC03994B
    [9]
    ZHAO L, ZHANG Y, ZHANG Z L, et al. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces[J]. National Science Review,2020,7(1):27-36. doi: 10.1093/nsr/nwz145
    [10]
    QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312-1803325. doi: 10.1002/aenm.201803312
    [11]
    QIN Q, JANG H, CHEN L, et al. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478-1801490. doi: 10.1002/aenm.201801478
    [12]
    BAE S Y, MAHMOOD J, JEON I Y, et al. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction[J]. Nanoscale Horizons,2020,5(1):43-56. doi: 10.1039/C9NH00485H
    [13]
    MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology,2017,12(5):441-446. doi: 10.1038/nnano.2016.304
    [14]
    MITCHELL W J, XIE J, JACHIMOWSKI T A, et al. Carbon monoxide hydrogenation on the Ru(001) surface at low temperature using gas-phase atomic hydrogen: Spectroscopic evidence for the carbonyl insertion mechanism on a transition metal surface[J]. Journal of the American Chemical Society,1995,117(9):2606-2617. doi: 10.1021/ja00114a025
    [15]
    BARMAN B K, DAS D, NANDA K K. Facile synthesis of ultrafine Ru nanocrystal supported N-doped graphene as an exceptional hydrogen evolution electrocatalyst in both alkaline and acidic media[J]. Sustainable Energy & Fuels,2017,1(5):1028-1033.
    [16]
    XIE Q, WANG Z, LIN L, et al. Nanoscaled and atomic ruthenium electrocatalysts confined inside super-hydrophilic carbon nanofibers for efficient hydrogen evolution reaction[J]. Small,2021,17(38):2102160-2102180. doi: 10.1002/smll.202102160
    [17]
    CAO D, WANG J, XU H, et al. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution[J]. Small,2021,17(31):2101163-2101172. doi: 10.1002/smll.202101163
    [18]
    YANG J, CHEN B, LIU X, et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites[J]. Angewandte Chemie International Edition,2018,130(30):9495-9500.
    [19]
    IBRAHIM S M, EL SALMAWI K M, ZAHRAN A H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation[J]. Journal of Applied Polymer Science, 2007, 104(3): 2003-2008.
    [20]
    FEI B, WACH R A, MITOMO H, et al. Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC[J]. Journal of Applied Polymer Science,2000,78(2):278-283. doi: 10.1002/1097-4628(20001010)78:2<278::AID-APP60>3.0.CO;2-9
    [21]
    YADOLLAHI M, GHOLAMALI I, NAMAZI H, et al. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels[J]. International Journal of Biological Macromolecules,2015,74:136-141. doi: 10.1016/j.ijbiomac.2014.11.032
    [22]
    TAN J, LIU R, WANG W, et al. Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose[J]. Langmuir,2010,26(3):2093-2098. doi: 10.1021/la902593e
    [23]
    LI J, LI H, XIE W, et al. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction[J]. Small Methods,2022,6(1):2101324-2101333. doi: 10.1002/smtd.202101324
    [24]
    PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9(11):1276-1290. doi: 10.1039/B613962K
    [25]
    SHANG Y, XU X, GAO B, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews,2021,50(8):5281-5322. doi: 10.1039/D0CS01032D
    [26]
    LI D, JIA Y, CHANG G, et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte[J]. Chem,2018,4(10):2345-2356. doi: 10.1016/j.chempr.2018.07.005
    [27]
    TUAN D D, LIN K Y. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride[J]. Chemical Engineering Journal,2018,351:48-55. doi: 10.1016/j.cej.2018.06.082
    [28]
    LIU K, LI Z, XIE W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode[J]. Energy Storage Materials,2018,15:308-314. doi: 10.1016/j.ensm.2018.05.025
    [29]
    PENG J, CHEN Y, WANG K, et al. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy,2020,45(38):18840-18849. doi: 10.1016/j.ijhydene.2020.05.064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (977) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return