Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CHEN Qian, WANG Chaohui, ZHANG Wenwu, et al. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001
Citation: CHEN Qian, WANG Chaohui, ZHANG Wenwu, et al. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001

Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments

doi: 10.13801/j.cnki.fhclxb.20230111.001
  • Received Date: 2022-11-15
  • Accepted Date: 2022-12-29
  • Rev Recd Date: 2022-12-21
  • Available Online: 2023-01-12
  • Publish Date: 2023-11-01
  • The purpose is to reveal the deterioration law of mechanical properties for elastomer composites at different service environments and promote their popularization and application in the field of solvent-free coatings. Ultra high molecular weight polyethylene/elastomer (UHMWPE/EL) composites were prepared. Application environments such as hydrothermal aging, low-temperature embrittlement and climate aging were simulated, and the evolution process and laws of various mechanical properties for elastomer and its composites at different environments were studied. The damage status of shape auto restore ability for composites at different deformations and temperatures was evaluated. Finally, the durability and environmental adaptability of composites were proved. The results show that after continuous exposure for 7 days or 81 h at different application environments, the retention rates of mechanical properties for UHMWPE/EL composites are more than 90%, which meet the requirements of specifications. And the mechanical properties of composites decrease 15%-20% after being exposed to hygrothermal environment, cold environment and weathering environment for 30 days. The composites have obvious thermal stability and automatic shape recovery ability, and the recovery rates at different deformation modes of tension, bending and torsion are over 90%.

     

  • loading
  • [1]
    ZHANG Z H, WU J, ZHAO X, et al. Life evaluation of organic coatings on hydraulic metal structures[J]. Progress in Organic Coatings,2020,148:105848. doi: 10.1016/j.porgcoat.2020.105848
    [2]
    YU M D, FAN C Q, GE F, et al. Anticorrosion behavior of organic offshore coating systems in UV, salt spray and low temperature alternation simulated Arctic offshore environment[J]. Materials Today Communications,2021,28:102545. doi: 10.1016/j.mtcomm.2021.102545
    [3]
    HONARVAR NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings,2022,162:106573. doi: 10.1016/j.porgcoat.2021.106573
    [4]
    CROLL S G. Stress and embrittlement in organic coatings during general weathering exposure: A review[J]. Progress in Organic Coatings,2022,172:107085. doi: 10.1016/j.porgcoat.2022.107085
    [5]
    陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.

    CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese).
    [6]
    贾涉, 姚正军, 张莎莎, 等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能[J]. 复合材料学报, 2018, 35(9):2405-2413.

    JIA She, YAO Zhengjun, ZHANG Shasha, et al. Anticorrosion performance of silane modified nano TiO2-Zn-Al/waterborne epoxy coatings[J]. Acta Materiae Compositae Sinica,2018,35(9):2405-2413(in Chinese).
    [7]
    CHEN Q A, LU Y F, WANG C H, et al. Effect of raw material composition on the working performance of waterborne epoxy resin for road[J]. International Journal of Pavement Engineering,2022,23(7):2380-2391. doi: 10.1080/10298436.2020.1856842
    [8]
    CORCIONE C E, STRIANI R, FRIGIONE M. Organic-inorganic UV-cured methacrylic-based hybrids as protective coatings for different substrates[J]. Progress in Organic Coatings,2014,77(6):1117-1125. doi: 10.1016/j.porgcoat.2014.03.010
    [9]
    SHU P J, AI L, KONG Y H, et al. UV-cured organic-inorga-nic composites for highly durable and flexible antireflection coatings[J]. Applied Surface Science,2022,584:152600. doi: 10.1016/j.apsusc.2022.152600
    [10]
    CUI Y T, WEI B X, WANG Y J, et al. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications[J]. Progress in Organic Coatings,2022,163:106656. doi: 10.1016/j.porgcoat.2021.106656
    [11]
    CHEN Q, WANG C H, LI Y W, et al. Performance development of polyurethane elastomer composites in different construction and curing environments[J]. Construction and Building Materials,2023,365:130047. doi: 10.1016/j.conbuildmat.2022.130047
    [12]
    SHAMSADINLO B, SHEIKHI M R, UNVER O, et al. Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test[J]. Polymer Testing,2020,89:106594. doi: 10.1016/j.polymertesting.2020.106594
    [13]
    JING X, LI X Y, DI Y L, et al. Effect of the amide units in soft segment and urea units in hard segment on microstructures and physical properties of polyurethane elastomer[J]. Polymer,2021,233:124205. doi: 10.1016/j.polymer.2021.124205
    [14]
    SUN N, WANG Z F, MA X, et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds[J]. Industrial Crops and Products,2021,174:114178. doi: 10.1016/j.indcrop.2021.114178
    [15]
    陈谦, 王朝辉, 胡学亮, 等. 基于均衡调控的路用基础吸能材料制备及性能优化[J]. 复合材料学报, 2022, 39(7):3356-3368.

    CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica,2022,39(7):3356-3368(in Chinese).
    [16]
    LEI W Q, PEI H, FANG C Q, et al. Influence of nanocrystalline cellulose extracted from different precursors on properties of polyurethane elastomer composites[J]. Composites Science and Technology,2022,218:109159. doi: 10.1016/j.compscitech.2021.109159
    [17]
    ZHOU W J, REN S H, ZHANG F, et al. Reinforcement of boron-nitrogen coordinated polyurethane elastomers with silica nanoparticles[J]. Polymer,2022,256:125200. doi: 10.1016/j.polymer.2022.125200
    [18]
    PAN G F, WANG Z, GONG X B, et al. Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal-ligand bonds between the cerium(III) triflate and phloretin[J]. Chemical Engineering Journal, 2022, 446: 137228.
    [19]
    ISO. Plastics—Determination of the effects of exposure to damp heat, water spray and salt mist: ISO 4611: 2010[S]. Britain: British Standards Institution, 2010.
    [20]
    MA X, GUO W Q, XU Z J, et al. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance[J]. Composites Part B: Engineering,2020,192:108005. doi: 10.1016/j.compositesb.2020.108005
    [21]
    中国国家标准化管理委员会. 塑料 实验室光源暴露试验方法 第2部分: 氙弧灯: GB/T 16422.2—2022[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People's Republic of China. Plastics—Methods of exposure to laboratory light sources—Part 2: Xenon-arc lamps: GB/T 16422.2—2022[S]. Beijing: China Standards Press, 2022(in Chinese).
    [22]
    中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [23]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24]
    ISO. Plastics—Determination of charpy impact properties—Part non-instrumented impact test: ISO 179-1—2010[S]. Britain: British Standards Institution, 2010.
    [25]
    中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Testing method of static compression for packaging cushioning materials: GB/T 8168—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [26]
    ZARE M, PRABHAKARAN M P, PARVIN N, et al. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications[J]. Chemical Engineering Journal,2019,374:706-720. doi: 10.1016/j.cej.2019.05.167
    [27]
    王晓晗, 李洋, 孙俊奇. 基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J]. 高分子学报, 2021, 52(8):1043-1052.

    WANG Xiaohan, LI Yang, SUN Junqi. Mechanically robust and healable poly(vinyl alcohol)-based shape memory supramolecular plastics[J]. Acta Polymerica Sinica,2021,52(8):1043-1052(in Chinese).
    [28]
    中华人民共和国住房和城乡建设部. 建筑与市政工程防水通用规范: GB/T 55030—2022[S]. 北京: 中国建筑工业出版社, 2022.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. General specification for waterproofing of buildings and municipal works: GB/T 55030—2022[S]. Beijing: China Architecture & Building Press, 2022(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (588) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return