Volume 39 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003
Citation: GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003

Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs

doi: 10.13801/j.cnki.fhclxb.20220803.003
  • Received Date: 2022-06-08
  • Accepted Date: 2022-07-23
  • Rev Recd Date: 2022-07-14
  • Available Online: 2022-08-03
  • Publish Date: 2022-08-22
  • Developing structural composites with integration of lightning strike resistance is one of the trend of developing new composites. In this paper, a composite co-modified with graphene and carbon nanotubes was prepared. Its microstructure, mechanical properties, electrical conductivity and lightning-strike properties were studied. Morphology study shows that the conductive fillers are mainly distributed in the interlayer and the adjacent intralaminar regions, while much less in the deep intralaminar regions. The composite has 0° flexural strength of (1538±86) MPa and 0° interlaminar shear strength of (107.0±1.0) MPa. Three laminates of 2 mm, 3 mm and 4 mm thickness were prepared for studying the electrical conductivity and lightning-strike properties. The in-plane conductivity of the composites is around 100 S/cm. The conductivity through thickness direction are 0.128 S/cm, 0.094 S/cm and 0.088 S/cm, respectively. The lightning-strike test shows that the total damage area of the three thickness samples is similar. The deep damage area decreases, while the damage depth increases with the decrease in conductivity through thickness direction. The damage mode is mainly the ablation damage of fiber and resin. No obvious delamination is found. The minimum flexural strength and the corresponding retention rates of the flexural strength and modulus of the damaged 2 mm thick laminate at the damage center are 782 MPa, 75% and 59.2%, respectively. The average flexural strength retention rates of the damage centers of the 2 mm and 3 mm thick laminates reached 87.4% and 87.2%, respectively. Their damage depths are only around 0.3 mm and 0.4 mm respectively.

     

  • loading
  • [1]
    ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre reinforced plastics—A review[J]. Composites Part B: Engineering,2019,166:555-579. doi: 10.1016/j.compositesb.2019.02.016
    [2]
    HASHISH M, KENT W A. Trimming of CFRP aircraft components[C]//WJTA-IMCA Conference and Expo. Houston, 2013.
    [3]
    KUMAR V, YOKOZEKI T, KARCH C, et al. Factors affecting direct lightning strike damage to fiber reinforced compo-sites: A review[J]. Composites Part B: Engineering,2020,183:107688. doi: 10.1016/j.compositesb.2019.107688
    [4]
    DAS S, YOKOZEKI T. A brief review of modified conductive carbon/glass fibre reinforced composites for structural applications: Lightning strike protection, electromagnetic shielding, and strain sensing[J]. Composites Part C: Open Access,2021,5:100162. doi: 10.1016/j.jcomc.2021.100162
    [5]
    WANG B, ZHU Y, MING Y, et al. Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study[J]. Materials& Design,2020,192:108724.
    [6]
    KATUNIN A. Lightning strike protection of aircraft compo-site structures: Analysis and comparative study[J]. Fatigue of Aircraft Structures,2016(8):49-54.
    [7]
    KATUNIN A, KRUKIEWICZ K, HEREGA A, et al. Concept of a conducting composite material for lightning strike protection[C]//6th International Advances in Applied Physics and Materials Science Congress Exhibition. Istanbul, 2016.
    [8]
    WANG F S, ZHANG Y, MA X T, et al. Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh[J]. Journal of Materials Science & Technology,2019,35(11):2693-2704.
    [9]
    GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences,2014,64:1-16. doi: 10.1016/j.paerosci.2013.07.002
    [10]
    ZHU H, FU K, YANG B, et al. Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite[J]. Composites Science and Technology,2021,207:108675. doi: 10.1016/j.compscitech.2021.108675
    [11]
    GOU J, TANG Y, LIANG F, et al. Carbon nanofiber paper for lightning strike protection of composite materials[J]. Composites Part B: Engineering,2009,41:192-198.
    [12]
    CHAKRAVARTHI D K, KHABASHESKU V N, VAIDYANATHAN R, et al. Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection[J]. Advanced Functional Materials,2011,21(13):2527-2533. doi: 10.1002/adfm.201002442
    [13]
    GARG A, CHALAK H D, BELARBI M O, et al. Estimation of carbon nanotubes and their applications as reinforcing composite materials—An engineering review[J]. Composite Structures,2021,272:114234. doi: 10.1016/j.compstruct.2021.114234
    [14]
    YOUSEFI N, FISHER S J, BURGSTALLER C, et al. Hierarchical carbon fibre composites incorporating high loadings of carbon nanotubes[J]. Composites Science and Technology,2022,222:109369. doi: 10.1016/j.compscitech.2022.109369
    [15]
    ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Compo-sites Part A: Applied Science and Manufacturing,2015,70:102-110. doi: 10.1016/j.compositesa.2014.11.029
    [16]
    QU S, DAI Y, ZHANG D, et al. Carbon nanotube film based multifunctional composite materials: An overview[J]. Functional Composites and Structures,2020,2(2):022002. doi: 10.1088/2631-6331/ab9752
    [17]
    JIANG M, CONG X, YI X, et al. A stochastic overlap network model of electrical properties for conductive weft yarn composites and their experimental study[J]. Compo-sites Science and Technology,2022,217:109075. doi: 10.1016/j.compscitech.2021.109075
    [18]
    HU D, LIU X, LIU W, et al. The effects of compaction and interleaving on through-thickness electrical resistance and in-plane mechanical properties for CFRP laminates[J]. Composites Science and Technology,2022,223:109441. doi: 10.1016/j.compscitech.2022.109441
    [19]
    GUO M. The electrical conductivity and interlaminar fracture toughness of composite laminate interleaved with silver-plated nylon mesh[J]. Journal of Reinforced Plastics and Composites, 2022: 07316844221099927. [2022-08-15]. DOI: https://doi.org/10.1177/07316844221099927.
    [20]
    DE VOLDERR M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [21]
    LIN W, WANG Y, YOUSEFPOUR K, et al. Evaluating the lightning strike damage tolerance for CFRP composite laminates containing conductive nanofillers[J]. Applied Composite Materials,2022,29(4):1537-1554.
    [22]
    LAMPKIN S, LIN W, ROSTAGHI-CHALAKI M, et al. Epoxy resin with carbon nanotube additives for lightning strike damage mitigation of carbon fiber composite laminates[C]//American Society for Composites (ASC) 34th Technical Conference. Atlanta, 2019.
    [23]
    SOYKASAP O, KARAKAYA S, COLAKOGLU M. Simulation of lightning strike damage in carbon nanotube doped CFRP composites[J]. Journal of Reinforced Plastics and Composites,2016,35(6):504-515. doi: 10.1177/0731684415618458
    [24]
    KATUNIN A, KRUKIEWICZ K, TURCZYN R, et al. Lightning strike resistance of an electrically conductive CFRP with a CSA-doped PANI/epoxy matrix[J]. Composite Structures,2017,181:203-213. doi: 10.1016/j.compstruct.2017.08.091
    [25]
    ZHOU Y, RAGHU S N V, KUMAR V, et al. Simulated lightning strike investigation of CFRP comprising a novel polyaniline/phenol based electrically conductive resin matrix[J]. Composites Science and Technology,2021,214:108971. doi: 10.1016/j.compscitech.2021.108971
    [26]
    KUMAR V, SHARMA S, PATHAK A, et al. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage[J]. Composite Structures,2019,210:581-589. doi: 10.1016/j.compstruct.2018.11.088
    [27]
    OU Y, GONZALEZ C, VILATELA J J. Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils[J]. Composites Part B: Engineering,2020,201:108372. doi: 10.1016/j.compositesb.2020.108372
    [28]
    LIANG X, CHENG Q. Synergistic reinforcing effect from graphene and carbon nanotubes[J]. Composites Communications,2018,10:122-128. doi: 10.1016/j.coco.2018.09.002
    [29]
    SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications,2012,3(1):1-8.
    [30]
    PENG H J, HUANG J Q, ZHAO M Q, et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(19):2772-2781. doi: 10.1002/adfm.201303296
    [31]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [32]
    ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790−00[S]. West Conshohocken: ASTM, 2002.
    [33]
    ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—2016[S]. West Conshohocken: ASTM, 2016.
    [34]
    Society of Automotive Engineers. Aircraft lightning test method: SAE ARP5416A[S]. New York: Society of Automotive Engineers, 2005
    [35]
    孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12):2764-2771. doi: 10.13801/j.cnki.fhclxb.20190104.001

    SUN Jinru, YAO Xueling, LI Yafeng, et al. Damage properties of carbon fiber reinforced epoxy composite subjected to multiple continuous lightning current strikes[J]. Acta Materiae Compositae Sinica,2019,36(12):2764-2771(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190104.001
    [36]
    WANG Y, RAMAN PILLAI S K, CHE J, et al. High interlaminar shear strength enhancement of carbon fiber/epoxy composite through fiber-and matrix-anchored carbon nano-tube networks[J]. ACS Applied Materials & Interfaces,2017,9(10):8960-8966.
    [37]
    肖何, 陈藩, 刘寒松, 等. 国产ZT7 H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8):2554-2567.

    XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7 H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2554-2567(in Chinese).
    [38]
    GAO B, ZHANG R, HE M, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:433-440. doi: 10.1016/j.compositesa.2016.08.012
    [39]
    包建文, 唐邦铭, 沈宝华. 5228/T800复合材料力学性能研究[J]. 纤维复合材料, 1997(4):28-31.

    BAO Jianwen, TANG Bangming, SHEN Baohua. Study on mechanical properties of 5228/T800 composites[J]. Fiber Composites,1997(4):28-31(in Chinese).
    [40]
    张静静, 孙 明, 汪 洋, 等. 5229D/T700 导电环氧复合材料空间环境适应性研究[J]. 宇航材料工艺, 2018(5):49-67. doi: 10.12044/j.issn.1007-2330.2018.05.010

    ZHANG Jingjing, SUN ming, WANG Yang, et al. Space environmental suitability of 5229D/T700 conductive epoxy composites[J]. Aerospace Materials & Technology,2018(5):49-67(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.05.010
    [41]
    GUO M, YI X. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [42]
    FU S, GUO Y, SHI L, et al. Investigation on temperature behavior of CFRP during lightning strike using experiment and simulation[J]. Polymer Composites,2019,40(9):3541-3549. doi: 10.1002/pc.25216
    [43]
    XU H, TONG X, ZHANG Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology,2016,127:113-118. doi: 10.1016/j.compscitech.2016.02.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1144) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return