Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress on antibacterial textiles of MXene and its composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002
Citation: LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress on antibacterial textiles of MXene and its composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912. doi: 10.13801/j.cnki.fhclxb.20220627.002

Research progress on antibacterial textiles of MXene and its composite materials

doi: 10.13801/j.cnki.fhclxb.20220627.002
Funds:  Science and Technology Steering Program Project of China National Textile and Apparel Council (2021065)
  • Received Date: 2022-05-09
  • Accepted Date: 2022-06-17
  • Rev Recd Date: 2022-06-08
  • Available Online: 2022-06-28
  • Publish Date: 2023-04-15
  • MXene materials are two-dimensional transition metal carbides, nitrides or carbonitride nanomaterials with two-dimensional layered structures. Due to their excellent physical and chemical properties, MXene materials have been widely used in biosensing, cancer photothermal therapy, antibacterial and other aspects. Based on the research status of antibacterial properties of MXene, the antibacterial mechanism of MXene and its composite materials was explored, the antibacterial properties of MXene and its composite materials and the research progress of antibacterial finishing fabrics, antibacterial fibers and antibacterial dressings were described, and the future research direction of antibacterial textiles based on MXene and its composite materials was proposed.

     

  • loading
  • [1]
    HAN G, CEILLEY R. Chronic wound healing: A review of current management and treatments[J]. Advances in Therapy,2017,34(3):599-610. doi: 10.1007/s12325-017-0478-y
    [2]
    GAO Y, CRANSTON R. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal,2008,78(1):60-72. doi: 10.1177/0040517507082332
    [3]
    WINDLER L, HEIGHT M, NOWACK B. Comparative evaluation of antimicrobials for textile applications[J]. Environment International,2013,53:62-73. doi: 10.1016/j.envint.2012.12.010
    [4]
    BSHENA O, HEUNIS T D J, DICKS L M T, et al. Antimicrobial fibers: Therapeutic possibilities and recent advances[J]. Future Medicinal Chemistry,2011,3(14):1821-1847. doi: 10.4155/fmc.11.131
    [5]
    CAI Z, SUN G. Antimicrobial finishing of acrilan fabrics with cetylpyridinium chloride: Affected properties and structures[J]. Journal of Applied Polymer Science,2005,97(3):1227-1236. doi: 10.1002/app.21261
    [6]
    YAZDANKHAH S P, SCHEIE A A, HOIBY E A, et al. Triclosan and antimicrobial resistance in bacteria: An overview[J]. Microbial Drug Resistance,2006,12(2):83-90. doi: 10.1089/mdr.2006.12.83
    [7]
    ORHAN M, KUT D, GUNESOGLU C. Use of triclosan as antibacterial agent in textiles[J]. Indian Journal of Fibre & Textile Research,2007,32(1):114-118.
    [8]
    PALZA H. Antimicrobial polymers with metal nanoparticles[J]. International Journal of Molecular Sciences,2015,16(1):2099-2116. doi: 10.3390/ijms16012099
    [9]
    VARESANO A, VINEIS C, ALUIGI A, et al. Antimicrobial polymers for textile products[J]. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances,2011,3:99-110.
    [10]
    CHIEN H W, CHIU T H. Stable N-halamine on polydopamine coating for high antimicrobial efficiency[J]. European Polymer Journal,2020,130:109654. doi: 10.1016/j.eurpolymj.2020.109654
    [11]
    BADAWY M E I, RABEA E I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection[J]. International Journal of Carbohydrate Chemistry,2011,2011:460381. doi: 10.1155/2011/460381
    [12]
    SHAHID UL I, BUTOLA B S, MOHAMMAD F. Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials[J]. RSC Advances,2016,6(50):44232-44247. doi: 10.1039/C6RA05799C
    [13]
    GULATI R, SHARMA S, SHARMA R K. Antimicrobial textile: Recent developments and functional perspective[J]. Polymer Bulletin,2022,79:5747-5771. doi: 10.1007/s00289-021-03826-3
    [14]
    SAVOIA D. Plant-derived antimicrobial compounds: Alternatives to antibiotics[J]. Future Microbiology,2012,7(8):979-990.
    [15]
    UPADHYAY A, UPADHYAYA I, KOLLANOOR-JOHNY A, et al. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis[J]. BioMed Research International,2014,2014(55):761741.
    [16]
    SIMONCIC B, TOMSIC B. Structures of novel antimicrobial agents for textiles—A review[J]. Textile Research Journal,2010,80(16):1721-1737. doi: 10.1177/0040517510363193
    [17]
    BROWN E D, WRIGHT G D. Antibacterial drug discovery in the resistance era[J]. Nature,2016,529(7586):336-343. doi: 10.1038/nature17042
    [18]
    SOMMER M O A, MUNCK C, TOFT-KEHLER R V, et al. Prediction of antibiotic resistance: Time for a new preclinical paradigm?[J]. Nature Reviews Microbiology,2017,15(11):688-695.
    [19]
    MAZINANI A, RASTIN H, NINE M J, et al. Comparative antibacterial activity of 2D materials coated on porous-titania[J]. Journal of Materials Chemistry B,2021,9(32):6412-6424. doi: 10.1039/D1TB01122G
    [20]
    HUANG K, LI Z J, LIN J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews,2018,47(14):5109-5124. doi: 10.1039/C7CS00838D
    [21]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [22]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [23]
    SOLEYMANIHA M, SHAHBAZI M A, RAFIEERAD A R, et al. Promoting role of MXene nanosheets in biomedical sciences: Therapeutic and biosensing innovations[J]. Advanced Healthcare Materials,2019,8(1):1801137. doi: 10.1002/adhm.201801137
    [24]
    LU B B, ZHU Z Y, MA B Y, et al. 2D MXene nanomaterials for versatile biomedical applications: Current trends and future prospects[J]. Small,2021,17(46):2100946. doi: 10.1002/smll.202100946
    [25]
    GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-polymer composites for various biomedical applications[J]. Ceramics International,2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257
    [26]
    REN X Y, HUO M F, WANG M M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging[J]. ACS Nano,2019,13(6):6438-6454. doi: 10.1021/acsnano.8b09327
    [27]
    NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [28]
    RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives[J]. Ceramics International,2019,45(15):18167-18188. doi: 10.1016/j.ceramint.2019.06.114
    [29]
    TAN Z L, WEI J X, LIU Y, et al. V2CTx MXene and its derivatives: Synthesis and recent progress in electrochemical energy storage applications[J]. Rare Metals,2022,41(3):775-797.
    [30]
    曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210330.001
    [31]
    LIU G, GUO Y, MENG B, et al. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water[J]. Chinese Journal of Chemical Engineering,2022,41(1):260-266.
    [32]
    LI S, SHAO L, YANG Z, et al. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation[J]. Green Energy & Environment,2022,7(2):246-256.
    [33]
    吴梦, 饶磊, 张建峰, 等. MXene及其复合吸波材料的制备与性能研究进展[J]. 复合材料学报, 2022, 39(3):942-955.

    WU Meng, RAO Lei, ZHANG Jianfeng, et al. Research progress in preparation and performance of MXene and its composite absorbing materials[J]. Acta Materiae Compositae Sinica,2022,39(3):942-955(in Chinese).
    [34]
    ZENG Z, WU N, WEI J, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Letters,2022,14(1):1-16. doi: 10.1007/s40820-021-00751-y
    [35]
    李俊, 徐丽慧, 王黎明, 等. 基于二维过渡金属碳化物的超疏水电磁屏蔽织物的制备及性能研究[J]. 印染, 2022, 48(5):16-20.

    LI Jun, XU Lihui, WANG Liming, et al. Preparation and performance of superhydrophobic and electromagnetic shielding fabric based on two-dimensional transition metal carbides[J]. China Dyeing & Finishing,2022,48(5):16-20(in Chinese).
    [36]
    YU L, HU L, ANASORI B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718
    [37]
    张亚林, 王梦倩, 陈兴刚, 等. Ti3C2TX MXenes 材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2):678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002

    ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(2):678-687(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220412.002
    [38]
    TAN L, WEI C, ZHANG Y, et al. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte[J]. Journal of Energy Chemistry,2022,69(6):221-230.
    [39]
    CAO B, LIU H, ZHANG P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [40]
    黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641. doi: 10.13801/j.cnki.fhclxb.20211123.002

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211123.002
    [41]
    舒小兰. MXene/rGO复合膜的制备及其热声性能研究[D]. 深圳: 深圳大学, 2020.

    SHU Xiaolan. Preparation and thermoacoustic perfor-mance study of MXene/rGO composite film[D]. Shenzhen: Shenzhen University, 2020(in Chinese).
    [42]
    SINHA A, ZHAO H, HUANG Y, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2018,105:424-435. doi: 10.1016/j.trac.2018.05.021
    [43]
    LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society,2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818
    [44]
    许惠凤, 董永强, 朱希, 等. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5):752-766. doi: 10.7536/PC200653

    XU Huifeng, DONG Yongqiang, ZHU Xi, et al. Novel two-dimensional MXene for biomedical applications[J]. Progress in Chemistry,2021,33(5):752-766(in Chinese). doi: 10.7536/PC200653
    [45]
    GUAN Q, MA J, YANG W, et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing[J]. Nanoscale,2019,11(30):14123-14133. doi: 10.1039/C9NR04421C
    [46]
    ABBASI F, HAJILARY N, REZAKAZEMI M. Antibacterial properties of MXene-based nanomaterials: A review[J]. Materials Express,2022,12(1):34-48. doi: 10.1166/mex.2022.2138
    [47]
    HUANG R, CHEN X, DONG Y, et al. MXene composite nanofibers for cell culture and tissue engineering[J]. ACS Applied Bio Materials,2020,3(4):2125-2131. doi: 10.1021/acsabm.0c00007
    [48]
    ZHOU L, ZHENG H, LIU Z, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing[J]. ACS Nano,2021,15(2):2468-2480. doi: 10.1021/acsnano.0c06287
    [49]
    WU F, ZHENG H, WANG W, et al. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation[J]. Science China Materials,2021,64(3):748-758. doi: 10.1007/s40843-020-1451-7
    [50]
    LIN X P, LI Z J, QIU J M, et al. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field[J]. Biomaterials Science,2021,9(16):5397-5431. doi: 10.1039/D1BM00430A
    [51]
    刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003

    LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201218.003
    [52]
    DAI C, LIN H, XU G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia[J]. Chemistry of Materials,2017,29(20):8637-8652. doi: 10.1021/acs.chemmater.7b02441
    [53]
    DAI C, CHEN Y, JING X X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano,2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241
    [54]
    LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces,2017,9(46):40077-40086. doi: 10.1021/acsami.7b13421
    [55]
    LIU S B, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress[J]. ACS Nano,2011,5(9):6971-6980. doi: 10.1021/nn202451x
    [56]
    HUI L W, HUANG J L, CHEN G X, et al. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)[J]. ACS Applied Materials & Interfaces,2016,8(1):20-25.
    [57]
    LIU S B, WEI L, HAO L, et al. Sharper and faster "Nano Darts" kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube[J]. ACS Nano,2009,3(12):3891-3902. doi: 10.1021/nn901252r
    [58]
    YANG K, MA Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer[J]. Nature Nanotechnology,2010,5(8):579-583. doi: 10.1038/nnano.2010.141
    [59]
    ZOU X F, ZHANG L, WANG Z J, et al. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society,2016,138(7):2064-2077. doi: 10.1021/jacs.5b11411
    [60]
    RAJAVEL K, SHEN S, KE T, et al. Achieving high bactericidal and antibiofouling activities of 2D titanium carbide (Ti3C2Tx) by delamination and intercalation[J]. 2D Materials,2019,6(3):035040. doi: 10.1088/2053-1583/ab23ce
    [61]
    JASTRZEBSKA A, KARWOWSKA E, BASIAK D, et al. Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM[J]. International Journal of Electrochemical Science,2017,12(3):2159-2172.
    [62]
    JASTRZEBSKA A M, KARWOWSKA E, WOJCIECHOWSKI T, et al. The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E-coli bacteria[J]. Journal of Materials Engineering and Performance,2019,28(3):1272-1277. doi: 10.1007/s11665-018-3223-z
    [63]
    RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016,10(3):3674-3684. doi: 10.1021/acsnano.6b00181
    [64]
    TIAN T, SHI X, CHENG L, et al. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent[J]. ACS Applied Materials & Interfaces,2014,6(11):8542-8548.
    [65]
    SHAMSABADI A A, GH M S, ANASORI B, et al. Antimicrobial mode-of-action of colloidal Ti3C2TX MXene nanosheets[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16586-16596.
    [66]
    KIM I Y, PARK S, KIM H, et al. Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film[J]. Advanced Functional Materials,2014,24(16):2288-2294. doi: 10.1002/adfm.201303040
    [67]
    AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736. doi: 10.1021/nn101390x
    [68]
    PANDEY R P, RASHEED P A, GOMEZ T, et al. Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets[J]. ACS Applied Nano Materials,2020,3(11):11372-11382. doi: 10.1021/acsanm.0c02463
    [69]
    LEE O S, MADJET M E, MAHMOUD K A. Antibacterial mechanism of multifunctional MXene nanosheets: Domain formation and phase transition in lipid bilayer[J]. Nano Letters,2021,21(19):8510-8517. doi: 10.1021/acs.nanolett.1c01986
    [70]
    TAN L Y, SIN L T, BEE S T, et al. Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application[J]. Solid State Phenomena,2019,290:292-297.
    [71]
    NASKAR A, LEE S, LEE Y, et al. A new nano-platform of erythromycin combined with Ag nano-particle ZnO nano-structure against methicillin-resistant staphylococcus aureus[J]. Pharmaceutics,2020,12(9):841. doi: 10.3390/pharmaceutics12090841
    [72]
    ALSOHAIMI I H, NASSAR A M, ELNASR T A S, et al. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities[J]. Journal of Cleaner Production,2020,248:119274. doi: 10.1016/j.jclepro.2019.119274
    [73]
    LIU S, WEN B, JIANG X, et al. Enhanced photocathodic antifouling/antibacterial properties of polyaniline-Ag-N-doped TiO2 coatings[J]. Journal of Materials Science,2020,55(34):16255-16272. doi: 10.1007/s10853-020-05170-9
    [74]
    WANG W, FENG H M, LIU J G, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chemical Engineering Journal,2020,386:124116. doi: 10.1016/j.cej.2020.124116
    [75]
    ZHU X, ZHU Y, JIA K, et al. A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications[J]. Nanoscale,2020,12(37):19129-19141. doi: 10.1039/D0NR04925E
    [76]
    PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E
    [77]
    LV S, SONG B, HAN F, et al. MXene-based hybrid system exhibits excellent synergistic antibiosis[J]. Nanotechnology,2021,33(8):085101.
    [78]
    HEGSTAD K, LANGSRUD S, LUNESTAD B T, et al. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health?[J]. Microbial Drug Resistance,2010,16(2):91-104. doi: 10.1089/mdr.2009.0120
    [79]
    RASOOL K, MAHMOUD K A, JOHNSON D J, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets[J]. Scientific Reports,2017,7(1):1-11. doi: 10.1038/s41598-016-0028-x
    [80]
    RASOOL K, PANDEY R P, RASHEED P A, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)[J]. Materials Today,2019,30:80-102. doi: 10.1016/j.mattod.2019.05.017
    [81]
    ROZMYSLOWSKA-WOJCIECHOWSKA A, MITRZAK J, SZUPLEWSKA A, et al. Engineering of 2D Ti3C2 MXene surface charge and its influence on biological properties[J]. Materials,2020,13(10):2347. doi: 10.3390/ma13102347
    [82]
    NIE Y, MA S Y, TIAN M Z, et al. Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability[J]. Surface & Coatings Technology,2021,410:126966.
    [83]
    XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie International Edition,2016,55(47):14569-14574. doi: 10.1002/anie.201606643
    [84]
    LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters,2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339
    [85]
    FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Advanced Functional Materials,2019,29(22):1901942. doi: 10.1002/adfm.201901942
    [86]
    WU Z, SHI J, SONG P, et al. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery[J]. International Journal of Biological Macromolecules,2021,183:870-879. doi: 10.1016/j.ijbiomac.2021.04.164
    [87]
    ZHENG Y, YAN Y, LIN L, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection[J]. Acta Biomaterialia,2022,142:113-123. doi: 10.1016/j.actbio.2022.02.019
    [88]
    张思雨, 赵立环, 刘斯璐, 等. 基于氧化石墨烯及其复合材料的纺织品抗菌整理研究进展[J]. 复合材料学报, 2021, 38(4):1043-1053. doi: 10.13801/j.cnki.fhclxb.20201202.002

    ZHANG Siyu, ZHAO Lihuan, LIU Silu, et al. Research progress of antibacterial finishing of textiles based on graphene oxide and its composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1043-1053(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201202.002
    [89]
    张宪胜, 施楣梧, 王莉莉, 等. 基于二维层状MXene纳米片制备电磁屏蔽织物的方法及产品: 中国, 109868646A[P]. 2019-06-11.

    ZHANG Xiansheng, SHI Meiwu, WANG Lili, et al. Method for making electromagnetic shielding fabric based on two-dimensional layered MXene nanosheets and product: China, 109868646A[P]. 2019-06-11(in Chinese).
    [90]
    马亚楠, 罗时军, 张传坤, 等. 一种基于MXene柔性织物电极的制备方法及其应用: 中国, 109003836B[P]. 2020-01-07.

    MA Ya'nan, LUO Shijun, ZHANG Chuankun, et al. A method for preparing an MXene-based flexible fabric electrode and application thereof to a supercapacitor: China, 109003836B[P]. 2020-01-07(in Chinese).
    [91]
    辛斌杰, 李悦, 陆赞, 等. 一种基于MXene和棉织物复合材料制备柔性超级电容器的方法: 中国, 112331488A[P]. 2021-02-05.

    XIN Binjie, LI Yue, LU Zan, et al . Preparation method of manganese dioxide/graphene composite carbided cotton fabric: China,112331488A[P]. 2021-02-05(in Chinese).
    [92]
    YAN B, BAO X, LIAO X, et al. Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC[J]. ACS Applied Materials & Interfaces,2022,14(1):2132-2145. doi: 10.1021/acsami.1c22740
    [93]
    UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials,2019,29(45):1905015. doi: 10.1002/adfm.201905015
    [94]
    ZHAO X, WANG L Y, TANG C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications[J]. ACS Nano,2020,14(7):8793-8805. doi: 10.1021/acsnano.0c03391
    [95]
    赵兵, 张露, 黄紫娟, 等. 一种MXenes-AgNPs协同的抗菌棉织物及其制备方法: 中国, 112941899A[P]. 2021-06-11.

    ZHAO Bing, ZHANG Lu, HUANG Zijuan, et al. MXenes-AgNPs synergistic antibacterial cotton fabric and preparation method thereof: China, 112941899A[P]. 2021-06-11(in Chinese).
    [96]
    赵兵, 张露, 牛建涛, 等. 一种基于MXene二维纳米片的多功能真丝面料及其制备方法: 中国, 112941907A[P]. 2021-06-11.

    ZHAO Bing, ZHANG Lu, NIU Jiantao, et al. Multifunctional real silk fabric based on MXene two-dimensional nanosheets and preparation method of multifunctional real silk fabric: China, 112941907A[P]. 2021-06-11(in Chinese).
    [97]
    王小英, 吴正国, 唐淑玮. 一种止血用壳聚糖/Mxene抗菌复合海绵及其制备方法: 中国, 112516374A[P]. 2021-03-19.

    WANG Xiaoying, WU Zhengguo, TANG Shuwei. Chitosan/Mxene antibacterial composite sponge for hemostasis and preparation method thereof: China, 112516374A[P]. 2021-03-19(in Chinese).
    [98]
    马贵平, 董慧丰, 陈炎, 等. 一种抗菌止血敷料: 中国, 112546286A[P]. 2021-03-26.

    MA Guiping, DONG Huifeng, CHEN Yan, et al. Antibacterial hemostasis dressing: China, 112546286A[P]. 2021-03-26(in Chinese).
    [99]
    MAYERBERGER E A, STREET R M, MCDANIEL R M, et al. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers[J]. RSC Advances,2018,8(62):35386-35394. doi: 10.1039/C8RA06274A
    [100]
    曹美文, 丁榛, 张宇欣, 等. 一种海藻酸钠抗菌敷料的制备方法: 中国, 111440349A[P]. 2020-07-24.

    CAO Meiwen, DING Zhen, ZHANG Yuxin, et al. Preparation method of sodium alginate antibacterial dressing: China, 111440349A[P]. 2020-07-24(in Chinese).
    [101]
    ZOU Y, JIN X, ZHANG X, et al. A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene[J]. Science China Technological Sciences,2021,64(12):2744-2754. doi: 10.1007/s11431-021-1843-3
    [102]
    MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced Healthcare Materials,2020,9(19):2000872. doi: 10.1002/adhm.202000872
    [103]
    ZHANG T, GU J, LIU X, et al. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine[J]. Materials Science and Engineering: C,2020,111:110855. doi: 10.1016/j.msec.2020.110855
    [104]
    ZHANG S, YE J, SUN Y, et al. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing[J]. Chemical Engineering Journal,2020,390:124523. doi: 10.1016/j.cej.2020.124523
    [105]
    AADIL K R, MUSSATTO S I, JHA H. Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity[J]. International Journal of Biological Macromolecules,2018,120:763-767. doi: 10.1016/j.ijbiomac.2018.08.109
    [106]
    XU X, WANG S, WU H, et al. A multimodal antimicrobial platform based on MXene for treatment of wound infection[J]. Colloids and Surfaces B: Biointerfaces,2021,207:111979. doi: 10.1016/j.colsurfb.2021.111979
    [107]
    CHATTERJEE A K, SARKAR R K, CHATTOPADHYAY A P, et al. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli[J]. Nanotechnology,2012,23(8):085103. doi: 10.1088/0957-4484/23/8/085103
    [108]
    CHEN S, GUO Y, ZHONG H, et al. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles[J]. Chemical Engineering Journal,2014,256:238-246. doi: 10.1016/j.cej.2014.07.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (1173) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return