Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004
Citation: WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004

High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method

doi: 10.13801/j.cnki.fhclxb.20220705.004
  • Received Date: 2022-05-05
  • Accepted Date: 2022-06-26
  • Rev Recd Date: 2022-06-23
  • Available Online: 2022-07-07
  • Publish Date: 2023-05-15
  • In recent years, flexible capacitive pressure sensors have been widely used in medical diagnosis, electronic skin, artificial intelligence and other important fields due to their excellent mechanical properties and good sensitivity. In order to improve the sensitivity of the capacitive flexible sensor, a flexible capacitive pressure sensor with a three-dimensional network cross-linked multi-wall carbon nanotubes (MWCNTs)/polydimethylsilane (PDMS) sponge as the dielectric layer was designed based on multi-directional freezing process. The manufacturing process, sensing mechanism, response performance and human suitability of the sensor were characterized. The results show that: The three-dimensional network structure of MWCNTs/PDMS sponge dielectric layer is successfully constructed by multi-direction freezing method, and the flexible capacitive is assembled by this dieletric layer. It has high sensitivity (~1.94 kPa−1), low detection limit (~4 Pa), fast response time (~250 ms), good stability and human suitability. The flexible sensor has a good application prospect in wearable electronic products.

     

  • loading
  • [1]
    KIM J, CHOU E F, LE J, et al. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials,2019,8(13):1900109. doi: 10.1002/adhm.201900109
    [2]
    NA C H, YUN K S. Capacitive force sensor with wide dynamic range using wrinkled micro structures as dielectric layer[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6663-6667. doi: 10.1166/jnn.2019.17094
    [3]
    LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small,2016,12(36):5042-5048. doi: 10.1002/smll.201600760
    [4]
    KIM Y, JANG S, OH J H. Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment[J]. Microelectronic Engi-neering,2019,215:111002. doi: 10.1016/j.mee.2019.111002
    [5]
    LIU M, YU L Y, SINDHU V, et al. Incorporation of liquid fillers into silicone foams to enhance the electro-mechanical properties[J]. International Journal of Smart and Nano Materials,2020,11(1):11-23. doi: 10.1080/19475411.2020.1727061
    [6]
    CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. ACS Nano,2017,11(5):4507-4513. doi: 10.1021/acsnano.6b08027
    [7]
    TRASE I, XU Z, CHEN Z, et al. Thin-film bidirectional transducers for haptic wearables[J]. Sensors and Actuators A: Physical,2020,303:111655. doi: 10.1016/j.sna.2019.111655
    [8]
    CHHETRY A, SHARMA S, YOON H, et al. Enhanced sensi-tivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications[J]. Advanced Functional Materials,2020,30(31):1910020. doi: 10.1002/adfm.201910020
    [9]
    李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7):2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005

    LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica,2021,38(7):2152-2161(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201110.005
    [10]
    ZHAO Q, YANG L, CHEN K, et al. Ultra-high discharged energy density in PVDF based composites through inducing MnO2 particles with optimized geometric structure[J]. Nano Energy,2019,65:104007. doi: 10.1016/j.nanoen.2019.104007
    [11]
    JUNG Y, LEE W, JUNG K, et al. A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional PDMS/microsphere composite[J]. Polymers,2020,12(6):1412. doi: 10.3390/polym12061412
    [12]
    FU M, ZHANG J, JIN Y, et al. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers[J]. Advanced Science,2020,7(17):2000258. doi: 10.1002/advs.202000258
    [13]
    PRAKASH B S, VARMA K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites[J]. Compo-sites Science and Technology,2007,67(11-12):2363-2368. doi: 10.1016/j.compscitech.2007.01.010
    [14]
    GE G, CAI Y, DONG Q, et al. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection[J]. Nanoscale,2018,10(21):10033-10040. doi: 10.1039/C8NR02813C
    [15]
    YOON S G, CHANG S T. Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature[J]. Journal of Materials Chemistry C,2017,5(8):1910-1919. doi: 10.1039/C6TC03994D
    [16]
    ZHANG Y L, GUO X, WANG W, et al. Highly sensitive, low hysteretic and flexible strain sensor based on ecoflex-AgNWs-MWCNTs flexible composite materials[J]. Ieee Sensors Journal,2020,20(23):14118-14125. doi: 10.1109/JSEN.2020.3008159
    [17]
    MA L Q, SHUAI X T, HU Y G, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C,2018,6(48):13232-13240. doi: 10.1039/C8TC04297G
    [18]
    ZHANG Y, LIU S, MIAO Y, et al. Highly stretchable and sensitive pressure sensor array based on icicle-shaped liquid metal film electrodes[J]. ACS Applied Materials & Interfaces,2020,12(25):27961-27970. doi: 10.1021/acsami.0c04939
    [19]
    LI M, LIANG J, WANG X, et al. Ultra-sensitive flexible pressure sensor based on microstructured electrode[J]. Sensors,2020,20(2):371. doi: 10.3390/s20020371
    [20]
    WEI P Q, GUO X L, QIU X B, et al. Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane[J]. Nanotechnology, 2019, 30(45): 455501.
    [21]
    HAN T, NAG A, SIMORANGKIR R B V B, et al. Multifunctional flexible sensor based on laser-induced graphene[J]. Sensors,2019,19(16):3477. doi: 10.3390/s19163477
    [22]
    JIN T, PAN Y, JEON G J, et al. Ultrathin nanofibrous membranes containing insulating microbeads for highly sensi-tive flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(11):13348-13359. doi: 10.1021/acsami.0c00448
    [23]
    SUN X X, WANG K P, ZHANG B X, et al. Hierarchically porous cellulose monolith prepared by combination of ice-template method and non-solvent-induced phase separation method[J]. Chemistry Letters,2017,46(6):792-794. doi: 10.1246/cl.170155
    [24]
    DEVILLE S, MEILLE S, SEUBA J. A meta-analysis of the mechanical properties of ice-templated ceramics and metals[J]. Science & Technology of Advanced Materials,2015,16(4):43501.
    [25]
    XU Z, ZHANG Y, LI P. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. ACS Nano,2012,6(8):7103-7113. doi: 10.1021/nn3021772
    [26]
    LU Y, SUN Q, YANG D, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry,2012,22(27):13548-13557. doi: 10.1039/c2jm31310c
    [27]
    HE Z, CHEN W, LIANG B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks[J]. ACS Applied Materials & Interfaces,2018,10(15):12816-12823. doi: 10.1021/acsami.8b01050
    [28]
    MIAO P, WANG J, ZHANG C, et al. Graphene nanostructure-based tactile sensors for electronic skin applications[J]. Nano-Micro Letters,2019,11(1):1-37. doi: 10.1007/s40820-018-0235-z
    [29]
    QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces,2019,11(43):40716-40725. doi: 10.1021/acsami.9b16511
    [30]
    KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces,2016,8(26):16912-16922.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (951) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return