Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
XU Peijun, HAN Lei, WANG Linjiang, et al. Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002
Citation: XU Peijun, HAN Lei, WANG Linjiang, et al. Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2049-2055. doi: 10.13801/j.cnki.fhclxb.20220525.002

Bamboo structure like carbon fiber reinforced porous polyethersulfone matrix composites

doi: 10.13801/j.cnki.fhclxb.20220525.002
Funds:  National Natural Science Foundation of China (51978072); Key Research and Development Program of Shanxi Province (2022 GY-371); Fundamental Research Funds for the Central Universities of Chang'an University (300102312404)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-05-13
  • Rev Recd Date: 2022-05-04
  • Available Online: 2022-05-26
  • Publish Date: 2023-04-15
  • Bamboo is a natural composite material, which is composed of bamboo fiber as reinforcement and lignin as matrix. The bamboo fiber structure endows bamboo with the characteristics of high strength, and the porous lignin structure endows bamboo with the characteristics of light and high toughness. In this paper, carbon fiber reinforced bamboo structure porous polyethersulfone matrix composites (CF/foam PES) were prepared by imitating the structural characteristics of bamboo, and porous polyethersulfone was deposited on the surface of carbon fiber by liquid immersion method and immersion precipitation phase transformation method. The results show that: compared with traditional carbon fiber reinforced dense polyethersulfone matrix composites (CF/condense PES), CF/foam PES prepared in this paper has low apparent density; the specific strength and specific modulus of CF/foam PES are 234.5% and 192.6% higher than those of CF/condense PES. Moreover, the porous polyethersulfone matrix enhances the energy absorption properties of CF/foam PES.

     

  • loading
  • [1]
    ZHAO N, WANG Z, CAI C, et al. Bioinspired materials: From low to high dimensional structure[J]. Advanced Materials,2014,26(41):6994-7017. doi: 10.1002/adma.201401718
    [2]
    AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science,2005,309(5732):275-278. doi: 10.1126/science.1112255
    [3]
    黄盛霞. 竹材的构造与力学行为的关系[D]. 合肥: 安徽农业大学, 2007.

    HUANG Shengxia. The relation between structural properties and mechanical behavior of bamboo[D]. Hefei: Anhui Agricultural University, 2007(in Chinese).
    [4]
    HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: Underlying mechanisms[J]. Acta Biomaterialia,2015,16:178-186. doi: 10.1016/j.actbio.2015.01.038
    [5]
    于文吉, 江泽慧, 叶克林. 竹材特性研究及其进展[J]. 世界林业研究, 2002, 15(2):50-55. doi: 10.3969/j.issn.1001-4241.2002.02.008

    YU Wenji, JIANG Zehui, YE Kelin. Characteristics research of bamboo and its development[J]. World Forestry Research,2002,15(2):50-55(in Chinese). doi: 10.3969/j.issn.1001-4241.2002.02.008
    [6]
    CHIU H, YOUNG W. Characteristic study of bamboo fibers in preforming[J]. Journal of Composite Materials,2020,54(25):3871-3882. doi: 10.1177/0021998320923144
    [7]
    WANG X, REN H, ZHANG B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface,2012,9(70):988-996. doi: 10.1098/rsif.2011.0462
    [8]
    OBATAYA E, KITIN P, YAMAUCHI H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure[J]. Wood Science and Technology,2007,41(5):385-400. doi: 10.1007/s00226-007-0127-8
    [9]
    LONG L, WANG Z, CHEN K. Analysis of the hollow structure with functionally gradient materials of moso bamboo[J]. Journal of Wood Science,2015,61(6):569-577. doi: 10.1007/s10086-015-1504-9
    [10]
    RAY A K, MONDAL S, DAS S K, et al. Bamboo—A functionally graded composite-correlation between microstructure and mechanical strength[J]. Journal of Materials Science,2005,40(19):5249-5253. doi: 10.1007/s10853-005-4419-9
    [11]
    HASSOUNE-RHABBOUR B, POUSSINES L, NASSIET V. Development of an adhesion test for characterizing the interface fiber/polymer matrix[J]. Key Engineering Materials,2012,498:210-218. doi: 10.4028/www.scientific.net/KEM.498.210
    [12]
    FURUNO R, TAKATUJI Y, KUBO K, et al. Improvement of the adhesive strength of the leadframe and epoxy resin by forming organic molecules-metal composite interface[J]. Electronics and Communications in Japan,2017,100(1):67-71. doi: 10.1002/ecj.11924
    [13]
    CUI J, QIN Z, MASIC A, et al. Multiscale structural insights of load bearing bamboo: A computational modeling approach[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,107:103743. doi: 10.1016/j.jmbbm.2020.103743
    [14]
    DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review[J]. Advanced Composites and Hybrid Materials,2019,2(2):214-233. doi: 10.1007/s42114-018-0072-z
    [15]
    XIE W, CHENG H F, CHU Z Y, et al. Effect of FSS on microwave absorbing properties of hollow-porous carbon fiber composites[J]. Materials & Design,2009,30(4):1201-1204. doi: 10.1016/j.matdes.2008.06.018
    [16]
    XU L, LI X, NI L, et al. Ablation behavior of functional gradient ceramic coating for porous carbon-bonded carbon fiber composites[J]. Corrosion Science,2018,142:145-152. doi: 10.1016/j.corsci.2018.07.025
    [17]
    李希鹏, 王树立, 张俭. 仿生多孔膜材料研究进展[J]. 科学通报, 2021, 66(10):1220-1232. doi: 10.1360/TB-2020-1334

    LI Xipeng, WANG Shuli, ZHANG Jian, et al. Progress in bio-inspired porous membranes[J]. Chinese Science Bulletin,2021,66(10):1220-1232(in Chinese). doi: 10.1360/TB-2020-1334
    [18]
    GOKMEN M T, PREZ F. Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications[J]. Progress in Polymer Science,2012,37(3):365-405. doi: 10.1016/j.progpolymsci.2011.07.006
    [19]
    许培俊, 王临江, 张毅. 仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料[J]. 复合材料学报, 2021, 38(4):1302-1312.

    XU Peijun, WANG Linjiang, ZHANG Yi, et al. Bamboo like porous polyethersulfone matrix monofilament glass fiber composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1302-1312(in Chinese).
    [20]
    HUANG J, ZHANG K, WANG K, et al. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties[J]. Journal of Membrane Science,2012,423:362-370.
    [21]
    ZHANG M, ZHANG A, ZHU B, et al. Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process[J]. Journal of Membrane Science,2008,319(1-2):169-175. doi: 10.1016/j.memsci.2008.03.029
    [22]
    HUANG L, LI X, REN Y, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances,2017,7(34):20824-20832. doi: 10.1039/C7RA01014A
    [23]
    MATSUYAMA H, TAKIDA Y, MAKI T, et al. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation[J]. Polymer,2002,43(19):5243-5248. doi: 10.1016/S0032-3861(02)00409-3
    [24]
    JUNG H S, PARK Y, NAH C W, et al. Evaluation of the mechanical properties of polyether sulfone-toughened epoxy resin for carbon fiber composites[J]. Fibers and Polymers,2021,22(1):184-195. doi: 10.1007/s12221-021-9261-4
    [25]
    CUI S, CUI C, XIE J, et al. Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness[J]. Scientific Reports,2018,8(1):1-8.
    [26]
    中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. Plastics—Determination of tensile properties—Part 1: General principles: GB/T 1040.1—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
    [27]
    中国国家标准化管理委员会. 塑料 拉伸性能的测定 第5部分: 单向纤维增强复合材料的试验条件: GB/T 1040.5—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Plastics—Determination of tensile properties—Part 5: Test conditions for unidirectional fiber-reinforced plastic composites: GB/T 1040.5—2008[S]. Beijing: Standards Press ofChina, 2008(in Chinese).
    [28]
    赵晓勇, 曾一鸣, 施艳荞, 等. 相转化法制备超滤和微滤膜的孔结构控制[J]. 功能高分子学报, 2002, 15(4):487-495. doi: 10.3969/j.issn.1008-9357.2002.04.022

    ZHAO Xiaoyong, ZENG Yiming, SHI Yanqian, et al. Control of the pore structure of ultrafiltration and microfiltration membranes produced by phase inversion method[J]. Journal of Functional Polymers,2002,15(4):487-495(in Chinese). doi: 10.3969/j.issn.1008-9357.2002.04.022
    [29]
    SARASUA J, POUYET J. Dynamic mechanical behavior and interphase adhesion of thermoplastic (PEEK, PES) short fiber composites[J]. Journal of Thermoplastic Composite Materials,1998,11(1):2-21. doi: 10.1177/089270579801100101
    [30]
    DONG S, GAUVIN R. Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials[J]. Polymer Composites,1993,14(5):414-420. doi: 10.1002/pc.750140508
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (892) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return