Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
CHEN Luzheng, MA Hongliang, LOU Jiang, et al. Research Progress of Cellulose-based Thermoelectric Composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1992-2003. doi: 10.13801/j.cnki.fhclxb.20220530.004
Citation: CHEN Luzheng, MA Hongliang, LOU Jiang, et al. Research Progress of Cellulose-based Thermoelectric Composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1992-2003. doi: 10.13801/j.cnki.fhclxb.20220530.004

Research Progress of Cellulose-based Thermoelectric Composites

doi: 10.13801/j.cnki.fhclxb.20220530.004
Funds:  National Key R&D Plan (2020 YFC1910301); Shandong Natural Science Foundation (ZR2021 QC158; ZR2021 QB009); Open Fund of State Key Laboratory of Biomaterials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) (ZZ20190111; ZZ20210104)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-05-21
  • Rev Recd Date: 2022-05-14
  • Available Online: 2022-06-01
  • Publish Date: 2023-04-15
  • With the booming development of the global economy, the human demand for energy is increasing, so the research and application of green thermoelectric materials is urgent.As the most abundant natural polymer in nature, cellulose has rich three-dimensional network structure and excellent thermal stability. It is one of the ideal substrates for flexible thermoelectric composite materials. The large-scale development and utilization of cellulose is in line with the concept of green and sustainable development. Cellulose-based thermoelectric composite material can fully convert the waste heat generated by human body and fossil energy into electric energy, which has the advantages of stable performance, green and environmental protection, long service life, low cost and easy processing. This paper summarizes the development status and application field of cellulose matrix composite in recent years, focusing on polymer composite, carbon matrix composite and Bi-Te alloy composite. The challenges of cellulose matrix composites and the future research trends are summarized and discussed.

     

  • loading
  • [1]
    LI T, QIN H, WANG J, et al. Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water[J]. Renewable Energy,2021,175:318-336. doi: 10.1016/j.renene.2021.04.062
    [2]
    KUMAR K R, CHAITANYA N K, KUMAR N S. Solar thermal energy technologies and its applications for process heating and power generation—A review[J]. Journal of Cleaner Production,2021,282:125296. doi: 10.1016/j.jclepro.2020.125296
    [3]
    SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied Energy,2017,202:736-745. doi: 10.1016/j.apenergy.2017.05.181
    [4]
    ZHAO D, SULTANA A, EDBERG J, et al. The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectrics[J]. Journal of Materials Chemistry C, 2022, 10(7): 2732-2741.
    [5]
    SHI X, CHEN L, UHER C. Recent advances in high-performance bulk thermoelectric materials[J]. International Materials Reviews,2016,61(6):379-415. doi: 10.1080/09506608.2016.1183075
    [6]
    KRAEMER D, JIE Q, MCENANEY K, et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%[J]. Nature Energy,2016,1(11):1-8.
    [7]
    SUAREZ F, NOZARIASBMARZ A, VASHAEE D, et al. Designing thermoelectric generators for self-powered wearable electronics[J]. Energy Environmental Science,2016,9(6):2099-2113. doi: 10.1039/C6EE00456C
    [8]
    YU B, DUAN J, CONG H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting[J]. Science,2020,370(6514):342-346. doi: 10.1126/science.abd6749
    [9]
    高杰, 苗蕾, 张斌, 等. 柔性复合热电材料及器件的研究进展[J]. 功能高分子学报, 2017, 30(2):142-167.

    GAO Jie, MIAO Lei, ZHANG Bin, et al. Advances in flexible thermoelectric materials and devices[J]. Journal of Functional Polymers,2017,30(2):142-167(in Chinese).
    [10]
    王晓东. PEDOT∶PSS/无机复合薄膜及溶剂处理对其热电性能的优化[D]. 长春: 吉林大学, 2018.

    WANG Xiaodong. Optimizing the thermoelectric performance of PEDOT∶ PSS/inorganic films based on composite and solvent-treatment[D]. Changchun: Jilin University, 2018(in Chinese).
    [11]
    ABOL-FOTOUH D, DÖRLING B, ZAPATA-ARTEAGA O, et al. Farming thermoelectric paper[J]. Energy Environmental Science,2019,12(2):716-726. doi: 10.1039/C8EE03112F
    [12]
    GAO K, SHAO Z, WU X, et al. based transparent flexible thin film supercapacitors[J]. Nanoscale,2013,5(12):5307-5311. doi: 10.1039/c3nr00674c
    [13]
    KHAN S, UL-ISLAM M, KHATTAK W A, et al. Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications[J]. Carbohydrate Polymers,2015,127:86-93. doi: 10.1016/j.carbpol.2015.03.055
    [14]
    KHAN S, UL-ISLAM M, KHATTAK W A, et al. Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism, and biocompatibility[J]. Cellulose,2015,22(1):565-579. doi: 10.1007/s10570-014-0528-4
    [15]
    HE X, HAO Y, HE M, et al. Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing[J]. ACS Applied Materials Interfaces,2021,13(50):60498-60507. doi: 10.1021/acsami.1c20456
    [16]
    XU S, FAN Z, YANG S, et al. Highly flexible, stretchable, and self-powered strain-temperature dual sensor based on free-standing PEDOT∶PSS/carbon nanocoils-poly(vinyl) alcohol films[J]. ACS Sensors,2021,6(3):1120-1128. doi: 10.1021/acssensors.0c02390
    [17]
    ZHU Y, XU W, RAVICHANDRAN D, et al. A gill-mimicking thermoelectric generator (TEG) for waste heat recovery and self-powering wearable devices[J]. Journal of Materials Chemistry A,2021,9(13):8514-8526. doi: 10.1039/D1TA00332A
    [18]
    WANG Y, MAO H, WANG Y, et al. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man-machine interaction applications[J]. Journal of Materials Chemistry A,2020,8(30):15167-15176. doi: 10.1039/D0TA05651K
    [19]
    LI Y, LOU Q, YANG J, et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators[J]. Advanced Functional Materials,2022,32(7):2106902. doi: 10.1002/adfm.202106902
    [20]
    SUH E H, OH J G, JUNG J, et al. Brønsted acid doping of P3HT with largely soluble tris(pentafluorophenyl)borane for highly conductive and stable organic thermoelectrics via one-step solution mixing[J]. Advanced Energy Materials,2020,10(47):2002521. doi: 10.1002/aenm.202002521
    [21]
    DARABI S, HUMMEL M, RANTASALO S, et al. Green conducting cellulose yarns for machine-sewn electronic textiles[J]. ACS Applied Materials Interfaces,2020,12(50):56403-56412. doi: 10.1021/acsami.0c15399
    [22]
    DENG L, ZHANG Y, WEI S, et al. Highly foldable and flexible films of PEDOT∶PSS/Xuan paper composites for thermoelectric applications[J]. Journal of Materials Chemistry A,2021,9(13):8317-8324. doi: 10.1039/D1TA00820J
    [23]
    CHENG H, DU Y, WANG B, et al. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting[J]. Chemical Engineering Journal,2018,338:1-7. doi: 10.1016/j.cej.2017.12.134
    [24]
    NIU H, LIU Y, SONG H, et al. Facile preparation of flexible all organic PEDOT∶PSS/methyl cellulose thermoelectric composite film by a screen printing process[J]. Synthetic Metals,2021,276:116752. doi: 10.1016/j.synthmet.2021.116752
    [25]
    AIL U, KHAN Z U, GRANBERG H, et al. Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications[J]. Synthetic Metals,2017,225:55-63. doi: 10.1016/j.synthmet.2017.01.007
    [26]
    NAYAK R, SHETTY P, SELVAKUMAR M, et al. Formulation of new screen printable PANI and PANI/graphite based inks: Printing and characterization of flexible thermoelectric generators[J]. Energy,2022,238:121680. doi: 10.1016/j.energy.2021.121680
    [27]
    JIAO F, NADERI A, ZHAO D, et al. Ionic thermoelectric paper[J]. Journal of Materials Chemistry A,2017,5(32):16883-16888. doi: 10.1039/C7TA03196C
    [28]
    SHENG M, WANG Y, LIU C, et al. Significantly enhanced thermoelectric performance in SWCNT films via carrier tuning for high power generation[J]. Carbon,2020,158:802-807. doi: 10.1016/j.carbon.2019.11.057
    [29]
    LI H, ZONG Y, DING Q, et al. Paper-based thermoelectric generator based on multi-walled carbon nanotube/carboxylated nanocellulose[J]. Journal of Power Sources,2021,500:229992. doi: 10.1016/j.jpowsour.2021.229992
    [30]
    MO J H, KIM J Y, KANG Y H, et al. Carbon nanotube/cellulose acetate thermoelectric papers[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):15970-15975.
    [31]
    LEE H R, FURUKAWA N, RICCO A J, et al. Carbon nanotube thermoelectric devices by direct printing: Toward wearable energy converters[J]. Applied Physics Letters,2021,118(17):173901. doi: 10.1063/5.0042349
    [32]
    GNANASEELAN M, CHEN Y, LUO J, et al. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials[J]. Composites Science and Technology,2018,163:133-140. doi: 10.1016/j.compscitech.2018.04.026
    [33]
    LI H, ZONG Y, HE J, et al. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection[J]. Carbohydrate Polymers,2022,280:119036. doi: 10.1016/j.carbpol.2021.119036
    [34]
    JIA F, WU R, LIU C, et al. High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12591-12600.
    [35]
    BAO D, CHEN J, YU Y, et al. Texture-dependent thermoelectric properties of nano-structured Bi2Te3[J]. Chemical Engineering Journal,2020,388:124295. doi: 10.1016/j.cej.2020.124295
    [36]
    SHIN S, KUMAR R, ROH J W, et al. High-performance screen-printed thermoelectric films on fabrics[J]. Scientific Reports,2017,7(1):1-9. doi: 10.1038/s41598-016-0028-x
    [37]
    JANG E, POOSAPATI A, JANG N, et al. Thermoelectric properties enhancement of p-type composite films using wood-based binder and mechanical pressing[J]. Scientific Reports,2019,9(1):1-10.
    [38]
    DONG Z, LIU H, YANG X, et al. Facile fabrication of paper-based flexible thermoelectric generator[J]. npj Flexible Electronics,2021,5(1):1-6. doi: 10.1038/s41528-020-00098-1
    [39]
    JIN Q, SHI W, ZHAO Y, et al. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics[J]. ACS Applied Materials Interfaces,2018,10(2):1743-1751. doi: 10.1021/acsami.7b16356
    [40]
    ZHAO X, HAN W, JIANG Y, et al. A honeycomb-like paper-based thermoelectric generator based on a Bi2Te3/bacterial cellulose nanofiber coating[J]. Nanoscale,2019,11(38):17725-17735. doi: 10.1039/C9NR06197E
    [41]
    LI J, WANG B, GE Z, et al. Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability[J]. ACS Applied Materials Interfaces,2019,11(42):39088-39099. doi: 10.1021/acsami.9b13675
    [42]
    KHAN Z U, EDBERG J, HAMEDI M M, et al. Thermoelectric polymers and their elastic aerogels[J]. Advanced Materials,2016,28(22):4556-4562. doi: 10.1002/adma.201505364
    [43]
    HAN S, JIAO F, KHAN Z U, et al. Thermoelectric polymer aerogels for pressure-temperature sensing applications[J]. Advanced Functional Materials,2017,27(44):1703549. doi: 10.1002/adfm.201703549
    [44]
    HAN S, ALVI N U H, GRANLOF L, et al. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels[J]. Advanced Science,2019,6(8):1802128. doi: 10.1002/advs.201802128
    [45]
    ZHOU S, QIU Z, STRØMME M, et al. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose[J]. Advanced Functional Materials,2020,30(49):2005757. doi: 10.1002/adfm.202005757
    [46]
    WU K, ZHANG Y, GONG F, et al. Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables[J]. Chemical Engineering Journal,2021,421:127764. doi: 10.1016/j.cej.2020.127764
    [47]
    HU J, LI R, ZHANG K, et al. Extract nano cellulose from flax as thermoelectric enhancement material[J]. Journal of Physics: Conference Series,2021,1790(1):012087. doi: 10.1088/1742-6596/1790/1/012087
    [48]
    MULLA R, JONES D R, DUNNILL C W. Thin-films on cellulose paper to construct thermoelectric generator of promising power outputs suitable for low-grade heat recovery[J]. Materials Today Communications,2021,29:102738. doi: 10.1016/j.mtcomm.2021.102738
    [49]
    LAN X, WANG T, LIU C, et al. A high performance all-organic thermoelectric fiber generator towards promising wearable electron[J]. Composites Science and Technology,2019,182:107767. doi: 10.1016/j.compscitech.2019.107767
    [50]
    ZHANG Y, HU Y, LI Z, et al. Decoupling the trade-off between thermoelectric and mechanical performances for polymer composites via interfacial regulation[J]. Composites Science and Technology,2022,222:109373. doi: 10.1016/j.compscitech.2022.109373
    [51]
    LV H, LIANG L, ZHANG Y, et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting[J]. Nano Energy,2021,88:106260. doi: 10.1016/j.nanoen.2021.106260
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1052) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return