Volume 39 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHAO Donghui, YANG Jiaqi, MENG Xinmiao, et al. Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5264-5274. doi: 10.13801/j.cnki.fhclxb.20220619.001
Citation: ZHAO Donghui, YANG Jiaqi, MENG Xinmiao, et al. Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5264-5274. doi: 10.13801/j.cnki.fhclxb.20220619.001

Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades

doi: 10.13801/j.cnki.fhclxb.20220619.001
Funds:  National Natural Science Foundation of China (51908038)
  • Received Date: 2022-04-25
  • Accepted Date: 2022-06-03
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-06-20
  • Publish Date: 2022-11-01
  • The use of pultruded glass fiber-reinforced polymer (GFRP) strips as sandwich spar caps of wind turbine blades can overcome the manufacturing defects such as wrinkles and bubbles caused by conventional fiber cloth laying process. It can also improve the modulus and strength of the material as well as reduce the manufacturing cost, and hence becomes one of the promising manufacturing techniques for wind blades in the future. To investi-gate the influence of the face sheet thickness and the shear-span ratio on the strength and failure modes of the sandwich spar cap, a series of sandwich specimens with biaxial GFRP face sheets and pultruded GFRP strips core were tested by four-point bending. The test results show that with the increase of the face sheet, the failure mode of the specimen changes from the rupture of pultruded GFRP strip for the specimen without face sheet, to the damage or rupture of GFRP face sheet for the specimen with single layer face sheet, and to the delamination for the specimen with multilayer face sheets. The failure mode could be controlled by proper design of the ratio between the core and face sheets. Also, the initial stiffness of the sandwich spar cap increases with the increase of the face sheet thickness and with the decrease of the shear-span ratio. Increasing the face sheet thickness could improve both strength and ductility of the test specimens, and could delay the cracking of the glue seam as well as reduce the sudden loss of maximum load.

     

  • loading
  • [1]
    寇海霞. 复合材料风电叶片刚度退化模型研究[D]. 兰州: 兰州理工大学, 2019.

    KOU Haixia. Research on stiffness degradation model of composite wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).
    [2]
    SAHU B K. Wind energy developments and policies in China: A short review[J]. Renewable and Sustainable Energy Reviews,2018,81(1):1393-1405.
    [3]
    唐荆. 大型风电复合材料叶片主承力部件结构失效研究[D]. 北京: 中国科学院大学, 2019.

    TANG Jing. Structural failure of the primary load-carrying component of large composite wind turbine blades[D]. Beijing: University of Chinese Academy of Science, 2019(in Chinese).
    [4]
    HEGLER S, PLETTEMEIER D. Simulative investigation of the radar cross section of wind turbines[J]. Applied Sciences,2019,9(19):4024. doi: 10.3390/app9194024
    [5]
    国家能源局. 2020年度全国可再生能源电力发展监测评价报告[EB/OL]. (2021-06-20) [2022-04-30]. http://zfxxgk.nea.gov.cn/2021-07/02/c_1310039970.htm.

    National Energy Administration. Monitoring and evaluation report of national renewable energy and electric power development in 2020[EB/OL].(2021-06-20)[2022-04-30]. http://zfxxgk.nea.gov.cn/2021-07/02/c_1310039970.htm.
    [6]
    蔡新, 潘盼, 朱杰, 等. 风力发电机叶片[M]. 北京: 中国水利水电出版社, 2014: 8.

    CAI Xin, PAN Pan, ZHU Jie, et al. Wind turbine blade[M]. Beijing: China Water Power Press, 2014: 8(in Chinese).
    [7]
    MUTKULE S K, GORAD P P, RAUT S R, et al. Optimum and reliable material for wind turbine blade[J]. International Journal of Engineering Research & Technology,2015,4(2):624-627.
    [8]
    许经纬. 碳纤维/玻璃纤维混杂增强复合材料力学性能研究及风电叶片应用[D]. 苏州: 苏州大学, 2019.

    XU Jingwei. Study on mechanical properties of carbon/glass hybridized fabric reinforced composites and applications for wind turbine blades[D]. Suzhou: Soochow University, 2019(in Chinese).
    [9]
    STEWART R. Wind turbine blade production-New products keep pace as scale increases[J]. Reinforced Plastics,2012,56(1):18-25. doi: 10.1016/S0034-3617(12)70033-4
    [10]
    BRØNDSTED P, HOLMES J W, SØRENSEN B F. Wind rotor blade materials technology[J]. European Sustainable Energy Review,2008(2):36-41.
    [11]
    李成良, 王继辉, 薛忠民, 等. 大型风机叶片材料的应用和发展[J]. 玻璃钢/复合材料, 2008(4):49-52.

    LI Chengliang, WANG Jihui, XUE Zhongmin, et al. Application and development of materials of large-scale wind turbine blades[J]. Fiber Reinforced Plastics/Composites,2008(4):49-52(in Chinese).
    [12]
    BAI Y, KELLER T, WU C. Pre-buckling and post-buckling failure at web-flange junction of pultruded GFRP beams[J]. Materials and Structures,2013,46(7):1143-1154. doi: 10.1617/s11527-012-9960-9
    [13]
    CHEN G M, TENG J G, CHEN J F, et al. Finite element modeling of debonding failures in FRP-strengthened RC beams: A dynamic approach[J]. Computers & Structures,2015,158:167-183.
    [14]
    FENG P, LI Z Y, WANG J, et al. Novel joint for pultruded FRP beams and concrete-filled FRP columns: Conceptual and experimental investigations[J]. Composite Structures,2022,287:115339. doi: 10.1016/j.compstruct.2022.115339
    [15]
    MARTIN R W, SABATO A, SCHOENBERG A, et al. Comparison of nondestructive testing techniques for the inspection of wind turbine blades' spar caps[J]. Wind Energy,2018,21(11):980-996. doi: 10.1002/we.2208
    [16]
    马志勇. 大型风电叶片结构设计方法研究[D]. 北京: 华北电力大学, 2011.

    MA Zhiyong. Research on large-scale wind turbine blade structure design method[D]. Beijing: North China Electric Power University, 2011(in Chinese).
    [17]
    GRIFFIN D, MALKIN M. Lessons learned from recent blade failures: Primary causes and risk-reducing technologies[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando: American Institute of Aeronautics and Astronautics, 2011, 259: 1-9.
    [18]
    MISHNAEVSKY L, BRANNER K, PETERSEN H N, et al. Materials for wind turbine blades: An overview[J]. Materials,2017,10(11):1285. doi: 10.3390/ma10111285
    [19]
    冯鹏. 新型FRP空心桥面板的设计开发与受力性能研究[D]. 北京: 清华大学, 2004.

    FENG Peng. Development and study on an innovative FRP bridge deck[D]. Beijing: Tsinghua University, 2004(in Chinese).
    [20]
    齐玉军, 熊伟, 刘伟庆, 等. 新型FRP拉挤夹芯型材及其结构应用初探[J]. 玻璃钢/复合材料, 2014(12):25-30.

    QI Yujun, XIONG Wei, LIU Weiqing, et al. A review on innovative pultruded FRP composite sandwich profiles and structural utilization[J]. Fiber Reinforced Plastics/Composites,2014(12):25-30(in Chinese).
    [21]
    LIU T Q, FENG P, WU Y W, et al. Developing an innovative curved-pultruded large-scale GFRP arch beam[J]. Composite Structures,2021,256:113111. doi: 10.1016/j.compstruct.2020.113111
    [22]
    ZHAO D H, LIU T Q, LU X F, et al. Experimental and numerical analysis of a novel curved sandwich panel with pultruded GFRP strip core[J]. Composite Structures,2022,288:115404. doi: 10.1016/j.compstruct.2022.115404
    [23]
    WU C, TIAN J, DING Y, et al. Axial compression behavior of pultruded GFRP channel sections[J]. Composite Structures,2022,289:115438. doi: 10.1016/j.compstruct.2022.115438
    [24]
    何东晓, 黄力刚, 杨松, 等. 我国复合材料风机叶片的几种制造工艺与发展前景[J]. 纤维复合材料, 2007(2): 12-14.

    HE Dongxiao, HUANG Ligang, YANG Song, et al. The outlook and manufacturing process of composite turbine rotor blades[J]. Fiber Composites, 2007(2): 12-14(in Chinese).
    [25]
    YARBROUGH A A, GEIGER S B, CARUSO C D. Methods for manufacturing a spar cap for a wind turbine rotor blade: US, 14/552 518[P]. 2016-05-26.
    [26]
    GIROLAMO D, KRISTENSEN J J Ø, NOERLEM M. Pultruded fibrous composite strips having corrugated profiles for wind turbine blade spar caps: US, 16/218 631[P]. 2019-06-27.
    [27]
    VEDERNIKOV A, SAFONOV A, TUCCI F, et al. Pultruded materials and structures: A review[J]. Journal of Compo-site Materials,2020,54(26):4081-4117. doi: 10.1177/0021998320922894
    [28]
    RAO B V. A study towards the optimization of pultrusion processes: Process-microstructure-property correlation[D]. Enschede: University of Twente, 2021.
    [29]
    柴红梅, 袁凌, 李颖, 等. 复合材料风电叶片先进制造技术研究现状[J]. 玻璃钢/复合材料, 2019(2):102-107.

    CHAI Hongmei, YUAN Ling, LI Ying, et al. Present research situation of advanced technology in composite wind blade[J]. Fiber Reinforced Plastics/Composites,2019(2):102-107(in Chinese).
    [30]
    ERTURK E. Preliminary analysis of a concept wind turbine blade with piecewise constant chord and constant twist angle using BEM method[J]. International Journal of Renewable Energy Research (IJRER),2018,8(4):1890-1902.
    [31]
    张为军, 田野, 覃兆平, 等. 桥梁用大截面FRP拉挤型材的结构设计与试验研究[J]. 玻璃钢/复合材料, 2013(9):55-60.

    ZHANG Weijun, TIAN Ye, QIN Zhaoping, et al. The research of large cross-section FRP pultrusion profiles structural design and type testing in bridge[J]. Fiber Reinforced Plastics/Composites,2013(9):55-60(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1039) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return