Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Chuang, ZHANG Jing, WANG Na, et al. Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002
Citation: ZHANG Chuang, ZHANG Jing, WANG Na, et al. Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002

Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers

doi: 10.13801/j.cnki.fhclxb.20220616.002
Funds:  National Key Research and Development Program "Science and Technology Winter Olympics" (2019YFF0302004); Liaoning Xingliao Talents Program (XLYC2005002); 2021 Science and Technology Research Project of Liaoning Province (2021JH1/10400091); Shenyang Science and Technology Plan-Major Key and Core Technology Research Project (20-202-1-15); Scientific Research Fund of Education Department of Liaoning Province (LJKZ0436)
  • Received Date: 2022-05-09
  • Accepted Date: 2022-06-03
  • Rev Recd Date: 2022-05-31
  • Available Online: 2022-06-16
  • Publish Date: 2023-05-15
  • The low mechanical strength of shape memory polymers (SMP) are insufficient to meet the standards of most commercial composites today, severely limiting their use in many advanced applications. Therefore, in order to prepare high-performance SMP composite materials, a novel nano-filler SiO2@PDA was prepared by surface modification of nano-silica (SiO2) with polydopamine (PDA), its structure and properties were characterized by SEM, XPS and FTIR, respectively. Shape memory composites based on trans-1,4-polyisoprene (TPI) were prepared by filling SiO2 and SiO2@PDA into TPI as nano-fillers. The thermal stability, comprehensive mechanical properties and shape memory properties of TPI/SiO2 and TPI/SiO2@PDA composites were systematically studied. The results show that PDA modification enhances the dispersion and interfacial interaction of SiO2 in the TPI matrix, so that the thermal stability and mechanical properties of the TPI/SiO2@PDA composites can be improved, while maintaining good shape memory performance. The impact strength and tensile strength of the composite reach the maximum values when the SiO2@PDA content is 1.5% (based on the mass of TPI, the same below), which are 43.5% and 25% higher than that of the neat TPI, respectively. Moreover, shape fixation rate (Rf) and shape recovery rate (Rr) of the composites are over 97%.

     

  • loading
  • [1]
    CHAN B Q, LOW Z W, HENG S J, et al. Recent advances in shape memory soft materials for biomedical applications[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10070-10087.
    [2]
    XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713
    [3]
    赵先锋, 汤朋飞, 史红艳. 4D打印复合软材料力学性能预测研究进展[J]. 复合材料学报, 2021, 38(6):1651-1668.

    ZHAO Xianfeng, TANG Pengfei, SHI Hongyan. Research progress on prediction of mechanical properties of 4D printing soft composite[J]. Acta Materiae Compositae Sinica,2021,38(6):1651-1668(in Chinese).
    [4]
    李文兵, 魏婉婷, 李金嵘, 等. 形状记忆聚合物纤维及增强复合材料的研究进展[J]. 复合材料学报, 2022, 39(1):77-96. doi: 10.13801/j.cnki.fhclxb.20210729.005

    LI Wenbing, WEI Wanting, LI Jinrong, et al. Research progress of shape memory polymer fibers and reinforced composites[J]. Acta Materiae Compositae Sinica,2022,39(1):77-96(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.005
    [5]
    TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6426-6435.
    [6]
    JIA X, SHEN B, ZHANG L, et al. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation[J]. Chemical Engineering Journal, 2021, 405: 126927.
    [7]
    WANG E, DONG Y, ISLAM Z, et al. Technology, effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites[J]. Composites Science and Technology,2019,169(5):209-216.
    [8]
    LIU Y, GUO Y, ZHAO J, et al. Technology, carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177(16):49-56.
    [9]
    JIAN W, WANG X, LU H, et al. Molecular dynamics simulations of thermodynamics and shape memory effect in CNT-epoxy nanocomposites[J]. Composites Science and Technology,2021,211(4):108849.
    [10]
    XU L, FU Y, DU M. Investigation on structures and properties of shape memory polyurethane/silica nanocompo-sites[J]. Chinese Journal of Chemistry,2011,29(4):703-710. doi: 10.1002/cjoc.201190144
    [11]
    SHARMA A, SINGHOLI A. Effect of nanosilica on shape memory and mechanical characterization of polylactic acid wood composite[J]. Polymer Composites,2021,42(5):2502-2510. doi: 10.1002/pc.25995
    [12]
    FU Y W, ZHANG Y Q, SUN W F, et al. Functionalization of silica nanoparticles to improve crosslinking degree, insulation performance and space charge characteristics of UV-initiated XLPE[J]. Molecules,2020,25(17):3794. doi: 10.3390/molecules25173794
    [13]
    LI X T, WANG H T, ZHANG Z W, et al. Preparation and mechanical properties of poly(γ-benzyl-glutamate) modified nano-silica reinforced polyurea composites[J]. Polymers for Advanced Technologies,2021,33(1):270-279.
    [14]
    ZHANG C, LI L, XIN Y, et al. Development of trans-1, 4-polyisoprene shape-memory polymer composites reinforced with carbon nanotubes modified by polydopamine[J]. Polymers,2022,14(1):110.
    [15]
    TENG J, WANG Z, LIU J, et al. Thermodynamic and shape memory properties of TPI/HDPE hybrid shape memory polymer[J]. Polymer Testing,2019,81:106257.
    [16]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17]
    中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18]
    CHEN Q T, YANG B, DING M Y, et al. Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): Effect of SiO2@PDA nanoparticles[J]. European Polymer Journal,2020,140:110039. doi: 10.1016/j.eurpolymj.2020.110039
    [19]
    QIU Z, WANG J, YANG K, et al. Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano: Silicon dioxide modified by polydopamine[J]. Journal of Applied Polymer Science,2017,134(26):45004.
    [20]
    YANG H, PI P H, YANG Z R, et al. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid[J]. Applied Surface Science,2016,388:268-273. doi: 10.1016/j.apsusc.2016.01.099
    [21]
    QIAN Y R, FENG J H, FAN D W, et al. A sandwich-type photoelectrochemical immunosensor for NT-pro BNP detection based on F-Bi2WO6/Ag2S and GO/PDA for signal amplification[J]. Biosensors and Bioelectronics,2019,131:299-306. doi: 10.1016/j.bios.2019.02.029
    [22]
    ZHU L, LU Y, WANG Y, et al. Preparation and characterization of dopamine-decorated hydrophilic carbon black[J]. Applied Surface Science,2012,258(14):5387-5393. doi: 10.1016/j.apsusc.2012.02.016
    [23]
    WU Y L, LU J, LIN X Y, et al. Bioinspired synthesis of SiO2/PDA-based nanocomposite-imprinted membranes with sol-gel imprinted layers for selective adsorption and separation applications[J]. Physical Chemistry Chemical Physics,2018,20(23):15775-15783. doi: 10.1039/C8CP02068J
    [24]
    WANG Z, REN R, SONG H, et al. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives[J]. Applied Surface Science,2018,428(15):630-639.
    [25]
    ZHANG J, XUE Z. A comparative study on the properties of eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010
    [26]
    KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science,2017,249:37-55. doi: 10.1016/j.cis.2017.07.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (1415) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return