Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
DAI Yan, XU Zifang, FU Yuhao, et al. Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007
Citation: DAI Yan, XU Zifang, FU Yuhao, et al. Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007

Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI

doi: 10.13801/j.cnki.fhclxb.20220623.007
Funds:  2021 Graduate Innovation Fund Project of Anhui University of Science and Technology (2021 CX2086); 2021 College Students Science Innovation and Scientific Research Education Demonstration Project of Anhui University of Science and Technology (KYX202116)
  • Received Date: 2022-04-27
  • Accepted Date: 2022-06-17
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-06-24
  • Publish Date: 2023-04-15
  • Based on the fact that electrochromic films have important research and development prospects in military camouflage, building energy saving, automobiles and other industrial fields, the surface of La2O3 was modified by silane coupling agent KH-550 and compounded with conductive polymer polyaniline (PANI) to prepare f-La2O3/PANI electrochromic material. Comparative analysis of composite electrode and pure PANI electrode by XRD, FTIR, SEM-EDS, UV-vis, and electrochemical workstation. The effect of f-La2O3 addition on the structure, morphology, electrochemical properties and electrochromic properties of PANI was investigated. The results show that the incorporation of f-La2O3 makes the PANI fibers tend to be smaller, and the composite material has higher crystallinity and molecular chain orientation than pure PANI; f-La2O3 will break the network cross-linking structure of PANI, resulting in a decrease in the electrochemical performance of the composite, but it can accelerate the transition process of PANI protonation and deprotonation, and effectively inhibit the oxidative degradation of PANI during the electrochromic process of the film; When f-La2O3/aniline molar ratio is 1∶3.5, the electrochromic performance of f-La2O3/PANI composite reaches the best, the coloration efficiency (CE) at 570 nm is 22.81 cm2·C−1, and the fading and coloring response time (τb, τc) are 1.29 s and 1.33 s, respectively. After 320 cycles of fading, the electrochemical activity of the thin films remains about 50% of the initial value.

     

  • loading
  • [1]
    KORENT A, SODERŽNIK K Ž, ŠTURM S, et al. A correlative study of polyaniline electropolymerization and its electrochromic behavior[J]. Journal of the Electrochemical Society,2020,167(10):106504. doi: 10.1149/1945-7111/ab9929
    [2]
    张翔, 李文杰, 李森然, 等. 自供能电致变色器件研究进展[J]. 复合材料学报, 2021, 38(6): 1724-1733.

    ZHANG Xiang, LI Wenjie, LI Senran, et al. Research process in self-powered electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1724-1733(in chinese).
    [3]
    KELLY F M, MEUNIER L, COCHRANE C, et al. Polyaniline: Application as solid state electrochromic in a flexible textile display[J]. Displays,2013,34(1):1-7. doi: 10.1016/j.displa.2012.10.001
    [4]
    WANG Y, GONG Z, ZENG Y, et al. High-properties electrochromic device based on TiO2@graphene/prussian blue core-shell nanostructures[J]. Chemical Engineering Journal,2022,431:134066. doi: 10.1016/j.cej.2021.134066
    [5]
    JAROSZ T, GEBKA K, STOLARCZYK A, et al. Transparent to black electrochromism—The “holy grail” of organic optoelectronics[J]. Polymers,2019,11(2):273. doi: 10.3390/polym11020273
    [6]
    WANG H, YAO C J, NIE H J, et al. Recent progress in integrated functional electrochromic energy storage devices[J]. Journal of Materials Chemistry C,2020,8(44):15507-15525. doi: 10.1039/D0TC03934A
    [7]
    ZHOU S, WANG S, ZHOU S, et al. An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film[J]. Nanoscale,2020,12(16):8934-8941. doi: 10.1039/D0NR01152E
    [8]
    WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports,2020,140:100524. doi: 10.1016/j.mser.2019.100524
    [9]
    CABUK M, GÜNDÜZ B. Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration[J]. Applied Surface Science,2017,424:345-351. doi: 10.1016/j.apsusc.2017.03.010
    [10]
    VAN N T, DO H H, TRUNG T Q, et al. Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film[J]. Journal of Alloys and Compounds,2021,882:160718. doi: 10.1016/j.jallcom.2021.160718
    [11]
    ZHANG L, LI D, LI X, et al. Further explore on the behaviors of IR electrochromism of a double layer constructed by proton acid-doped polyaniline film and ITO layer[J]. Dyes and Pigments,2019,170:107570. doi: 10.1016/j.dyepig.2019.107570
    [12]
    ZHANG S, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells,2019,200:109951. doi: 10.1016/j.solmat.2019.109951
    [13]
    LIU D Y, SUI G X, BHATTACHARYYA D. Synthesis and characterisation of nanocellulose-based polyaniline conducting films[J]. Composites Science and Technology,2014,99:31-36. doi: 10.1016/j.compscitech.2014.05.001
    [14]
    BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science,2009,34(8):783-810. doi: 10.1016/j.progpolymsci.2009.04.003
    [15]
    PENG H, YAN B, JIANG M, et al. A coral-like polyaniline/barium titanate nanocomposite electrode with double electric polarization for electrochromic energy storage applications[J]. Journal of Materials Chemistry A,2021,9(3):1669-1677. doi: 10.1039/D0TA08263E
    [16]
    JAMDEGNI M, KAUR A. Highly efficient dark to transparent electrochromic electrode with charge storing ability based on polyaniline and functionalized nickel oxide composite linked through a binding agent[J]. Electrochimica Acta,2020,331:135359. doi: 10.1016/j.electacta.2019.135359
    [17]
    NWANYA A C, JAFTA C J, EJIKEME P M, et al. Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method[J]. Electrochimica Acta,2014,128:218-225. doi: 10.1016/j.electacta.2013.10.002
    [18]
    XIONG S, WANG R, LI S, et al. Electrochromic behaviors of water-soluble polyaniline with covalently bonded acetyl ferrocene[J]. Journal of Electronic Materials,2018,47(7):3974-3982. doi: 10.1007/s11664-018-6281-y
    [19]
    JAMDEGNI M, KAUR-GHUMAAN S, KAUR A. Study of polyaniline and functionalized ZnO composite film linked through a binding agent for efficient and stable electrochromic applications[J]. Electrochimica Acta,2017,252:578-588. doi: 10.1016/j.electacta.2017.08.144
    [20]
    POUGET J P, JOZEFOWICZ M E, EPSTEIN A J, et al. X-ray structure of polyaniline[J]. Macromolecules,1991,24(3):779-789. doi: 10.1021/ma00003a022
    [21]
    DINARI M, MOMENI M M, GOUDARZIRAD M. Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots[J]. Journal of Materials Science,2016,51(6):2964-2971. doi: 10.1007/s10853-015-9605-9
    [22]
    HE Y. Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route[J]. Materials Chemistry and Physics,2005,92(1):134-137. doi: 10.1016/j.matchemphys.2005.01.033
    [23]
    张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(5):752-756.

    ZHANG Yunhao, ZHAI Lanlan, WANG Yan, et al. Surface modification of nano-SiO2 by silane coupling agent 3-(methacryloyloxy)propyltrimethoxysilane[J]. Journal of Materials Science & Engineering,2012,30(5):752-756(in Chinese).
    [24]
    NOROUZIAN R S, LAKOURAJ M M. Polyaniline-thiacalix[4]arene metallopolymer, self-doped, and externally doped conductive polymers[J]. Progress in Organic Coatings,2020,146:105731. doi: 10.1016/j.porgcoat.2020.105731
    [25]
    MARTINS J C, NETO J C M, PASSOS R R, et al. Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency[J]. Solid State Ionics,2020,346:115198. doi: 10.1016/j.ssi.2019.115198
    [26]
    ZHANG S, SUN G, HE Y, et al. Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films[J]. ACS Applied Materials & Interfaces,2017,9(19):16426-16434.
    [27]
    GU H, GUO C, ZHANG S, et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires[J]. ACS Nano,2018,12(1):559-567. doi: 10.1021/acsnano.7b07360
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (685) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return