Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
JIN Quan, SONG Enpeng, CAI Ke. Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002
Citation: JIN Quan, SONG Enpeng, CAI Ke. Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002

Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics

doi: 10.13801/j.cnki.fhclxb.20220509.002
Funds:  National Natural Science Foundation of China (21071115); Key Program of Shaanxi Natural Science Foundation (2020JZ-44); Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-04-26
  • Rev Recd Date: 2022-04-20
  • Available Online: 2022-05-10
  • Publish Date: 2023-04-15
  • The low comprehensive energy storage performance, such as the charging energy density, discharging energy density, and energy storage efficiency, is a key scientific problem to be solved urgently in the energy storage ceramics field. Both improving the polarization difference (∆P) and breakdown field strength (BDS) of the ceramics are the key to enhance their comprehensive energy storage performance. With the main crystal phase BaTiO3 (BT), utilizing the K0.5Na0.5NbO3 (KNN) as the coating agent, sintering aid and additives, the BT-KNN ceramics with the grain sizes of 100 nm and 200 nm was synthesized, respectively. The BT-KNN ceramics has obvious nanodomains, relaxation behaviors and dielectric temperature stability, and with a high ∆P and high BDS. Compared with the BT-KNN ceramics with the grain size of 100 nm, the BT-KNN ceramics with the grain size of 200 nm has a better comprehensive energy storage properties, including high charging energy density W (2.50 J·cm−3), recoverable energy density Wrec (2.08 J·cm−3) and energy storage efficiency η (83.2%). This research may provide a theoretical basis for preparing high comprehensive energy storage performance ceramics.

     

  • loading
  • [1]
    YAN F, YANG H B, LIN Y, et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications[J]. Inorganic Chemistry,2017,56(21):13510-13516. doi: 10.1021/acs.inorgchem.7b02181
    [2]
    YAN F, SHI Y J, ZHOU X F, et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications[J]. Chemical Engineering Journal,2020,417(1):127945.
    [3]
    WEI T, LIU K, FAN P Y, et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceramics International,2021,47(3):3713-3719. doi: 10.1016/j.ceramint.2020.09.228
    [4]
    YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Materials,2020,30:392-400. doi: 10.1016/j.ensm.2020.05.026
    [5]
    ZHANG L, PANG L X, LI W B, et al. Extreme high energy storage efficiency in perovskite structured (1-x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics[J]. Journal of the European Ceramic Society,2020,40(8):3343-3347. doi: 10.1016/j.jeurceramsoc.2020.03.015
    [6]
    HUANG Y H, WU Y J, LIU B, et al. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering[J]. Journal of Materials Chemistry A,2018,6(10):4477-4484. doi: 10.1039/C7TA10821D
    [7]
    CAI Z M, WANG X H, HONG W, et al. Grain-size-dependent dielectric properties in nanograin ferroelectrics[J]. Journal of the American Ceramic Society,2018,101(12):5487-5496. doi: 10.1111/jace.15803
    [8]
    LIU B B, WANG X H, ZHANG R X, et al. Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics[J]. Journal of the American Ceramic Society,2017,100(8):3599-3607. doi: 10.1111/jace.14802
    [9]
    ZHANG C, CHEN Y, ZHOU M X, et al. Achieving ultrahigh dielectric breakdown strength in MgO-based ceramics by composite structure design[J]. Journal of Materials Chemistry C,2019,7(26):8120-8130. doi: 10.1039/C9TC02197C
    [10]
    LI Y, SUN N N, LI X W, et al. Multiple electrical response and enhanced energy storage induced by unusual coexistent-phase structure in relaxor ferroelectric ceramics[J]. Acta Materialia,2018,146:202-210. doi: 10.1016/j.actamat.2017.12.048
    [11]
    GAO P, LIU Z H, ZHANG N, et al. New antiferroelectric perovskite system with ultrahigh energy storage performance at low electric field[J]. Chemistry of Materials,2019,31(3):979-990. doi: 10.1021/acs.chemmater.8b04470
    [12]
    YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties in novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. Journal of Materials Chemistry C,2019,7(19):5639-5645. doi: 10.1039/C9TC01414D
    [13]
    WANG G, LI J L, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energy & Environmental Science,2019,12(2):582-588.
    [14]
    QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and effciency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Advanced Energy Materials,2020,10(6):1903338.
    [15]
    YAN Z N, ZHANG D, ZHOU X F, et al. Silver niobate based lead-free ceramics with high energy storage density[J]. Journal of Materials Chemistry A,2019,7(17):10702-10711. doi: 10.1039/C9TA00995G
    [16]
    LIU G, LI Y, SHI M Q, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability[J]. Ceramics International,2019,45(15):19189-19196. doi: 10.1016/j.ceramint.2019.06.166
    [17]
    LI Q, LI M Y, WANG C, et al. Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modifed (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics[J]. Ceramics International,2019,45(16):19822-19828. doi: 10.1016/j.ceramint.2019.06.237
    [18]
    PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science,2019,365(6453):578-582. doi: 10.1126/science.aaw8109
    [19]
    PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nature Communications,2018,9:1813.
    [20]
    SUN Z X, MA C R, LIU M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering[J]. Advanced Materials,2017,29(5):1604427.
    [21]
    LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials,2018,17:349-354. doi: 10.1038/s41563-018-0034-4
    [22]
    SHVARTSMAN V V, LUPASCU D C. Lead-free relaxor ferroelectrics[J]. Journal of the American Ceramic Society,2012,95(1):1-26. doi: 10.1111/j.1551-2916.2011.04952.x
    [23]
    JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics,2011,110:74106.
    [24]
    HIRATA Y, FUJITA H, SHIMONOSONO T. Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system[J]. Ceramics International,2017,43(2):1895-1903. doi: 10.1016/j.ceramint.2016.10.149
    [25]
    OH J W, SEONG Y J, SHIN D S, et al. Investigation and two-stage modeling of sintering behavior of nano/micro-bimodal powders[J]. Powder Technology,2019,352(15):42-52.
    [26]
    XU H Y, ZOU J, WANG W M, et al. Densification mechanism and microstructure characteristics of nano- and micro- crystalline alumina by high-pressure and low temperature sintering[J]. Journal of the European Ceramic Society,2021,41(1):635-645. doi: 10.1016/j.jeurceramsoc.2020.08.018
    [27]
    ZHAI X Y, CHEN Y J, MA Y Q, et al. A new strategy of binary-size particles model for fabricating fine grain, high density and low resistivity ITO target[J]. Ceramics International,2020,46(9):13660-13668. doi: 10.1016/j.ceramint.2020.02.152
    [28]
    YANG Y, JI Y, FANG M X, et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivit[J]. Physical Review Letters,2019,123(13):137601.
    [29]
    CHEN B, TIAN Y, LU J B, et al. Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics[J]. Journal of the European Ceramic Society,2020,40(8):2936-2944. doi: 10.1016/j.jeurceramsoc.2020.03.003
    [30]
    JIN Q, ZHAO L L, CUI B, et al. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core-shell structural design[J]. Journal of Materials Chemistry C,2020,8(15):5248-5258. doi: 10.1039/D0TC00179A
    [31]
    HUI K Z, CHEN L L, CEN Z Y, et al. KNN based high dielectric constant X9 R ceramics with fine grain structure and energy storage ability[J]. Journal of the American Ceramic Society,2021,104(11):5815-5825. doi: 10.1111/jace.17970
    [32]
    CHEN B, LIANG P F, WU D, et al. High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics[J]. Powder Technology,2019,346(15):248-255.
    [33]
    ZHANG M, YANG H B, LI D, et al. Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics[J]. Journal of Materials Chemistry C,2020,8(26):8777-8785. doi: 10.1039/D0TC01711F
    [34]
    XING J, HUANG Y L, XU Q, et al. Realizing high comprehensive energy storage and ultrahigh hardness in lead-free ceramics[J]. ACS Applied Materials & Interfaces,2021,13(24):28472-28483.
    [35]
    QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability[J]. Journal of Materials Chemistry C,2016,4(9):1795-1803. doi: 10.1039/C5TC04005A
    [36]
    LI Y M, BIAN J J. Effects of reoxidation on the dielectric and energy storage properties of Ce-doped (Ba, Sr)TiO3 ceramics prepared by hot-pressed sintering[J]. Journal of the European Ceramic Society,2020,40(15):5441-5449. doi: 10.1016/j.jeurceramsoc.2020.06.076
    [37]
    MERSELMIZ S, HANANI Z, MEZZANE D, et al. High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic[J]. Ceramics International,2020,46(15):23867-23876. doi: 10.1016/j.ceramint.2020.06.163
    [38]
    WANG T, LIU J Q, KONG L, et al. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics[J]. Ceramics International,2020,46(16):25392-25398. doi: 10.1016/j.ceramint.2020.07.007
    [39]
    YANG Z T, DU H L, QU S B, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics[J]. Journal of Materials Chemistry A,2016,4(36):13778-13785. doi: 10.1039/C6TA04107H
    [40]
    YANG Z T, GAO F, DU H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties[J]. Nano Energy,2019,58:768-777. doi: 10.1016/j.nanoen.2019.02.003
    [41]
    YAN X D, ZHENG M P, GAO X, et al. High-performance lead-free ferroelectric BZT-BCT and its application in energy fields[J]. Journal of Materials Chemistry C,2020,8(39):13530-13556. doi: 10.1039/D0TC03461D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(8)

    Article Metrics

    Article views (903) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return