Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LI Meng, WANG Tian, HOU Xianguang, et al. Preparation of polyvinyl alcohol/sodium alginate composite aerogel and its application in efficient seawater desalination[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5726-5735. doi: 10.13801/j.cnki.fhclxb.20230310.003
Citation: LI Meng, WANG Tian, HOU Xianguang, et al. Preparation of polyvinyl alcohol/sodium alginate composite aerogel and its application in efficient seawater desalination[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5726-5735. doi: 10.13801/j.cnki.fhclxb.20230310.003

Preparation of polyvinyl alcohol/sodium alginate composite aerogel and its application in efficient seawater desalination

doi: 10.13801/j.cnki.fhclxb.20230310.003
Funds:  National Natural Science Foundation of China (52003131)
  • Received Date: 2022-11-10
  • Accepted Date: 2023-03-03
  • Rev Recd Date: 2023-02-15
  • Available Online: 2023-03-11
  • Publish Date: 2023-10-15
  • The desalination evaporator based on the solar interface water evaporation technology can realize the desalination and purification of seawater, but the evaporation rate of the evaporator is low at present. In this work, the composite aerogel of polyvinyl alcohol and sodium alginate was prepared by directional freezing. At the same time, carbon nanotubes were used as light absorbing material. The effects of the composition, proportion and content of light absorbing material of the composite aerogel on the evaporation performance of evaporator water were explored. The results show that the composite aerogel evaporator has a light absorption rate of up to 97% and excellent seawater desalination performance. The water evaporation rate under a sun light can reach 2.7 kg·m−2·h−1.In the long-term alternating process of light and darkness, the salt crystals accumulated on the surface of the evaporator will automatically melt and disappear, playing a self-cleaning effect, and can achieve long-term sustainable evaporation. It has broad application prospects in the field of seawater desalination.

     

  • loading
  • [1]
    WANG X, LIU Q, WU S, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716
    [2]
    CHEN C, LI Y, SONG J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017, 29(30): 1701756.
    [3]
    ZHU M, LI Y, CHEN G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107.
    [4]
    SUN F, LIU Q D, XIN X P, et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2021, 415: 128976.
    [5]
    ZHU M W, LI Y J, CHEN F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4): 1701028.
    [6]
    LI Z T, WANG C B, Multi-scale Ag/CuO photothermal materials: Preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464.
    [7]
    LI T, LIU H, ZHAO X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16): 1707134.
    [8]
    YU Z C, WU P Y. Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation[J]. Advanced Materials Technologies, 2020, 5(6): 2000065.
    [9]
    LEI Z W, SUN X T, ZHU S F, et al. Nature inspired MXene decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 1-16.
    [10]
    QIN H F, ZHANG Y F, JIANG J G, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269.
    [11]
    MA Q L, YIN P F, ZHAO M T, et al. MOF-based hierarchical structures for solar-thermal clean water production[J]. Advanced Materials, 2019, 31(17): 1808249.
    [12]
    LIU K, ZHANG W Y, CHENG H, et al. A nature-inspired monolithic integrated cellulose aerogel based evaporator for efficient solar desalination[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10612-10622.
    [13]
    STORER D P, PHELPS J L, WU X, et al. Graphene and rice straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces,2020,12(13):15279-15287. doi: 10.1021/acsami.0c01707
    [14]
    LIU Z, QING R K, XIE A O, et al. Self-contained Janus aerogel with antifouling and salt rejecting properties for stable solar evaporation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18829-18837.
    [15]
    LU Y, FAN D Q, WANG Y D, et al. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation[J]. ACS Nano, 2021, 15(6): 10366-10376.
    [16]
    LI J L, WANG X Y, LIN Z H, et al. Over 10 kg·m−2·h−1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 928-937.
    [17]
    LEI Z W, ZHU S F, SUN X T, et al. A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination[J]. Advanced Functional Materials, 2022, 32(40): 2205790.
    [18]
    高靖阳. 淀粉基气凝胶的制备及其性质测定[D]. 广州: 华南理工大学, 2020.

    GAO Jingyang. Preparation and characterization of starch based aerogels[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
    [19]
    ZHENG M L. The model and experiment for heat transfer characteristics of nanoporous silica aerogel[J]. Korean Journal of Materials Research, 2020, 30(4): 155-159.
    [20]
    KONG Y, DAN H B, KONG W J, et al. Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2020, 8(46): 24734-24742.
    [21]
    JOUKHDAR H, SEIFERT A, JÜNGST T, et al. Ice templating soft matter: Fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications[J]. Advanced Materials, 2021, 33(34): 2100091.
    [22]
    罗伟, 王林生, 陈裕欣, 等. 有机-无机复合气凝胶的制备及其阻燃性能研究进展[J]. 复合材料学报, 2021, 38(7):2056-2069. doi: 10.13801/j.cnki.fhclxb.20210324.002

    LUO Wei, WANG Linsheng, CHEN Yuxin, et al. Research progress on preparation and flame retardant properties of organic-inorganic composite aerogel[J]. Acta Materiae Compositae Sinica,2021,38(7):2056-2069(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210324.002
    [23]
    JIANG Y Z, HOU Y J, FANG J J, et al, Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing[J]. International Journal of Polymer Analysis and Characterization, 2019, 24(2): 132-141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (861) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return