Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHOU Chunheng, WANG Junyi, WANG Xintang, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001
Citation: ZHOU Chunheng, WANG Junyi, WANG Xintang, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001

Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures

doi: 10.13801/j.cnki.fhclxb.20220623.001
Funds:  National Natural Science Foundation of China (52208174); Zhejiang Provincial Natural Science Foundation of China (LQ20E080003); Central Government Guides Local Science and Technology Foundation (ZY21195010)
  • Received Date: 2022-04-07
  • Accepted Date: 2022-06-11
  • Rev Recd Date: 2022-06-10
  • Available Online: 2022-06-24
  • Publish Date: 2023-04-15
  • To study the residual bond performance of glass fiber reinforced polymer (GFRP) bars and seawater coral aggregate concrete after exposure to high temperature, the pull-out tests were performed through 54 GFRP bars coral aggregate concrete specimens and steel bars coral aggregate concrete specimens. The highest temperature of 350℃ and concrete classes of C20 to C30 were considered in this experiment. The surface changes and bond failure modes of specimens after high temperatures were observed. The bond stress-slippage curves, bond strength, stiffness and peak slippage were obtained. The influences of temperatures, bar diameters and concrete strengths on the bond properties of GFRP bars and coral aggregate concrete after high temperatures were analyzed. Furthermore, the deterioration mechanism of GRFP bars seawater coral aggregate concrete after high temperatures was revealed based on the analysis of mass loss rate and XRD tests. Finally, the bond stress-slippage constitutive relation and residual bond strength of GFRP bars and coral aggregate concrete after high temperatures were proposed. The results show that even though the failure modes of specimens after high temperature are similar to those at room temperature, the interface of GFRP bar and coral aggregate concrete is degraded significantly due to the carbonization of GFRP bar and pyrolysis of coral aggregate concrete. The bond strength of specimens decreases and the peak slippage increases as the temperature increasing. The smaller the diameter of GFRP bars, the lower the residual bond strength and stiffness of specimens after high temperatures. The higher the strength classes of coral aggregate concrete, the greater the residual bond stiffness and the smaller the peak slippage. The calculated results of the proposed bond stress-slippage constitutive model and residual bond strength of GFRP bars-coral aggregate concrete after high temperatures show a good agreement with the experimental results.

     

  • loading
  • [1]
    周济, 陈宗平, 陈宇良, 等. 潮汐区GFRP筋珊瑚海洋混凝土柱轴压性能试验及承载力计算[J]. 复合材料学报, 2022, 39(1): 344-360.

    ZHOU Ji, CHEN Zongping, CHEN Yuliang, et al. Test on axial compression performance and bearing capacity calculation of GFRP bars reinforced coral aggregate marine concrete columns exposed to tidal area[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 344-360(in Chinese).
    [2]
    刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438. doi: 10.13801/j.cnki.fhclxb.20200219.003

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200219.003
    [3]
    DONG Z, WU G, ZHU H, et al. Flexural behavior of seawater sea-sand coral concrete–UHPC composite beams reinforced with BFRP bars[J]. Construction and Building Materials,2020,265:120279. doi: 10.1016/j.conbuildmat.2020.120279
    [4]
    WANG X, ZHANG X, DING L, et al. Punching shear behavior of two-way coral-reef-sand concrete slab reinforced with BFRP composites[J]. Construction and Building Materials,2020,231:117113.
    [5]
    YANG S, YANG C, HUANG M, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials,2018,173:272-288. doi: 10.1016/j.conbuildmat.2018.04.015
    [6]
    WANG L, MAO Y, LV H, et al. Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80°C[J]. Construction and Building Materials,2018,162:442-449.
    [7]
    王磊, 毛亚东, 陈爽, 等. GFRP筋与珊瑚混凝土黏结性能的试验研究[J]. 建筑材料学报, 2018, 21(2):286-292. doi: 10.3969/j.issn.1007-9629.2018.02.018

    WANG Lei, MAO Yadong, CHEN Shuang, et al. Experimental research on bond performance between GFRP bars and the coral concrete[J]. Journal of Building Materials,2018,21(2):286-292(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.018
    [8]
    杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1):172-180. doi: 10.6052/j.issn.1000-4750.2017.06.S034

    YANG Chao, YANG Shutong, QI Dehai. Experimental study on the bond performance between BFRP bars and coral concrete[J]. Engineering Mechanics,2018,35(S1):172-180(in Chinese). doi: 10.6052/j.issn.1000-4750.2017.06.S034
    [9]
    高傲, 杨树桐, 高广希, 等. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 复合材料科学与工程, 2020(12):43-53. doi: 10.3969/j.issn.1003-0999.2020.12.008

    GAO Ao, YANG Shutong, GAO Guangxi, et al. Experimental study on the bond performance between BFRP bars and caral concrete in marine environment[J]. Composites Science and Engineering,2020(12):43-53(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.008
    [10]
    DAI J, YIN S, HU C. Analysis of key influencing factors of the bond performance between BFRP bars and coral reef and sand concrete[J]. Construction and Building Materials,2021,269:121248. doi: 10.1016/j.conbuildmat.2020.121248
    [11]
    陈爽, 吕海波, 王磊. 纤维增强塑料筋与珊瑚混凝土粘结滑移本构模型[J]. 桂林理工大学学报, 2019, 39(1):107-113.

    CHEN Shuang, LV Haibo, WANG Lei. Constitutive model of bond-slip relation between FRP bar and coral concrete[J]. Journal of Guilin University of Technology,2019,39(1):107-113(in Chinese).
    [12]
    ZHOU C, PAN J, ZHANG Z, et al. Comparative study on the tensile mechanical behavior of GFRP bars under and after high temperature exposure[J]. Case Studies in Construction Materials,2022,16:e00905. doi: 10.1016/j.cscm.2022.e00905
    [13]
    KATZ A, BERMAN N. Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete[J]. Cement and Concrete Composites,2000,22(6):433-443. doi: 10.1016/S0958-9465(00)00043-3
    [14]
    GALATI N, NANNI A, DHARANI L R, et al. Thermal effects on bond between FRP rebars and concrete[J]. Composites Part A: Applied Science and Manufacturing,2005,37(8):1223-1230.
    [15]
    吕西林, 周长东, 金叶. 火灾高温下GFRP筋和混凝土粘结性能试验研究[J]. 建筑结构学报, 2007, 28(5):32-39, 88. doi: 10.3321/j.issn:1000-6869.2007.05.004

    LV Xilin, ZHOU Changdong, JIN Ye. Test study on bond behavior between GFRP bar and concrete in high temperature[J]. Journal of Building Structures,2007,28(5):32-39, 88(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.05.004
    [16]
    王晓璐, 査晓雄, 张旭琛. 高温下FRP筋与混凝土的粘结性能[J]. 哈尔滨工业大学学报, 2013, 45(6):8-15. doi: 10.11918/j.issn.0367-6234.2013.06.002

    WANG Xiaolu, ZHA Xiaoxiong, ZHANG Xuchen. Bond behavior of FRP rebar and concrete at elevated temperature[J]. Journal of Harbin Institute of Technology,2013,45(6):8-15(in Chinese). doi: 10.11918/j.issn.0367-6234.2013.06.002
    [17]
    ASTM International. Standard practice for the preparation of substitute ocean water: ASTM D1141—1998[S]. West Conshohocken: ASTM International, 1998.
    [18]
    中华人民共和国国家质量监督检验检疫总局. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [19]
    LU L, YUAN G, SHU Q, et al. Bond behaviour between early age concrete and steel bar subjected to cyclic loading after fire[J]. Fire Safety Journal,2019,105:129-143. doi: 10.1016/j.firesaf.2019.02.012
    [20]
    LI Q, HUANG X, HUANG Z, et al. Bond characteristics between early aged fly ash concrete and reinforcing steel bar after fire[J]. Construction and Building Materials,2017,147:701-712. doi: 10.1016/j.conbuildmat.2017.04.184
    [21]
    XIONG Z, ZENG Y, LI L G, et al. Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete[J]. Construction and Building Materials,2021,274:122100. doi: 10.1016/j.conbuildmat.2020.122100
    [22]
    牛建刚, 边钰, 谢承斌. 再生混凝土与锈蚀钢筋界面粘结性能[J]. 科学技术与工程, 2020, 20(19):7845-7851.

    NIU Jiangang, BIAN Yu, XIE Chengbin. Interfacial bond properties between recycled concrete and corroded steel bar[J]. Science Technology and Engineering,2020,20(19):7845-7851(in Chinese).
    [23]
    IRSHIDAT M R. Bond strength evaluation between steel rebars and carbon nanotubes modified concrete[J]. Case Studies in Construction Materials,2021,14:e00477. doi: 10.1016/j.cscm.2020.e00477
    [24]
    ASHRAFI H, BAZLI M, NAJAFABADI E P, et al. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures[J]. Construction and Building Materials,2017,157:1001-1010. doi: 10.1016/j.conbuildmat.2017.09.160
    [25]
    SPAGNUOLO S, MEDA A, RINALDI Z, et al. Residual behaviour of glass FRP bars subjected to high temperatures[J]. Composite Structures,2018,203:886-893. doi: 10.1016/j.compstruct.2018.07.077
    [26]
    李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081. doi: 10.3969/j.issn.1007-9629.2014.06.024

    LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudinal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials,2014,17(6):1076-1081(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.024
    [27]
    YAO Y, HAO L. Mechanical properties and failure mechanism of carbon nanotube concrete at high temperatures[J]. Construction and Building Materials,2021,297:123782. doi: 10.1016/j.conbuildmat.2021.123782
    [28]
    朋改非, 王金羽, CHAN Y N S, 等. 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1):76-81. doi: 10.13878/j.cnki.jnuist.2009.01.012

    PENG Gaifei, WANG Jinyu, CHAN Y N S, et al. Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition,2009,1(1):76-81(in Chinese). doi: 10.13878/j.cnki.jnuist.2009.01.012
    [29]
    王英来. 高温后FRP筋拉伸性能及其与混凝土粘结性能试验研究[D]. 郑州: 郑州大学, 2013.

    WANG Yinglai. Experimental study on tensile property of FRP bars and bond behavior between FRP bars and concrete after high temperature[D]. Zhengzhou: Zhengzhou University, 2013(in Chinese).
    [30]
    刘华新, 朱伯衡. 高温对玄武岩纤维筋混杂纤维再生混凝土粘结性能的影响[J]. 科学技术与工程, 2022, 22(5):2049-2054. doi: 10.3969/j.issn.1671-1815.2022.05.041

    LIU Huaxin, ZHU Boheng. Effect of high temperature on bond behavior between basalt fiber reinforced polymer bars and hybrid fiber recycled aggregate concrete[J]. Science Technology and Engineering,2022,22(5):2049-2054(in Chinese). doi: 10.3969/j.issn.1671-1815.2022.05.041
    [31]
    COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [32]
    ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations[C]. Proceedings of the 7th European Conference on Earthquake Engineering. Berkeley, 1982: 69-80.
    [33]
    HUANG L, CHEN J, QU J, et al. Modeling for bond-constitutive relationships of FRP rebars to concrete matrix[J]. Construction and Building Materials,2020,263:120654. doi: 10.1016/j.conbuildmat.2020.120654
    [34]
    MALVAR L J. Tensile and bond properties of GFRP reinforcing bars[J]. Materials Journal,1995,92(3):276-285.
    [35]
    张海霞. FRP筋与混凝土粘结滑移性能研究[D]. 沈阳: 东北大学, 2006.

    ZHANG Haixia. Study on bond-slip behavior between FRP bars and concrete[D]. Shenyang: Northeastern University, 2006(in Chinese).
    [36]
    高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-43, 82. doi: 10.3321/j.issn:1000-8993.2003.07.011

    GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction,2003,33(7):41-43, 82(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.07.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (802) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return