Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Liqing, PAN Yannian, HU Wenbing, et al. Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002
Citation: ZHANG Liqing, PAN Yannian, HU Wenbing, et al. Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1611-1623. doi: 10.13801/j.cnki.fhclxb.20220630.002

Effect law and mechanism of ceramic tile powder on compressive strength of ultra high performance concrete

doi: 10.13801/j.cnki.fhclxb.20220630.002
Funds:  Regional Project of National Natural Science Foundation of China (51968021); Jiangxi Natural Science Foundation (20202BAB204031; 20202BABL214042); Jiangxi Provincial Department of Education General Project (GJJ210656); The Independent Subject of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure (HJGZ2021208)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-07-01
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-07-01
  • Publish Date: 2023-03-15
  • Ultra high performance concrete (UHPC) is faced with the problems of high cost and high self-shrinkage of cement matrix due to its extremely low water-binder ratio and high cement content in its wide application. One of the effective solutions is to replace part of cement with industrial by-products or wastes. As the waste ceramic tile has become a large amount of industrial waste, the application of ceramic tile powder in UHPC can effectively solve the problems of high consumption of cement and accumulation of waste ceramic tile. Therefore, ceramic tile powder was used to replace 10wt%, 15wt%, 20wt% and 25wt% by mass of cement to prepare a new type of green low-carbon UHPC. The effect law of ceramic tile powder on the compressive strength of UHPC was studied, and the modified Andreasen accumulation model, XRD analyses, TG/DTG, SEM observation were used to investigate the modification mechanisms, and the environmental footprint and the cost of ceramic tile powder on UHPC were also analyzed. The results show that the effect of the addition of ceramic tile powder on the compressive strength of UHPC is within ±10% at all age. Interestingly, ceramic tile powder has a significant influence on the development of compressive strength at 7-28 days and 28-60 days, and the increase rates of compressive strength of UHPC with 25wt% ceramic tile powder can reach 104.6% and 51.8%, respectively. This is mainly because that the addition of ceramic tile powder improves the packing compactness of UHPC, produces secondary hydration reaction and calcium silicate hydrate gel with low calcium-silicon ratio, improves the hydration degree of cement, and reduces the width of interface transition zone. According to environmental impact and cost calculation, ceramic tile powder can effectively reduce energy consumption, CO2 emission and cost of UHPC.

     

  • loading
  • [1]
    杨娟, 朋改非, 税国双. 再生钢纤维增韧超高性能混凝土的力学性能[J]. 复合材料学报, 2019, 36(8):1949-1956.

    YANG Juan, PENG Gaifei, SHUI Guoshuang. Mechanical properties of recycled steel fiber reinforced ultra-high-performance concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1949-1956(in Chinese).
    [2]
    姜海波, 冯家辉, 肖杰, 等. 体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索[J]. 复合材料学报, 2022, 39(2):707-717.

    JIANG Haibo, FENG Jiahui, XIAO Jie, et al. Experimental study on shear behavior of externally prestressed ultra-high performance concrete beams without stirrups[J]. Acta Materiae Compositae Sinica,2022,39(2):707-717(in Chinese).
    [3]
    杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG Juan, PENG Gaifei. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [4]
    过震文, 刘小方, 段昕智, 等. 超高性能混凝土在环境温度变化下的力学性能试验研究[J]. 复合材料学报, 2021, 38(10):3495-3503.

    GUO Zhenwen, LIU Xiaofang, DUAN Xinzhi, et al. Experiment study on mechanical properties of ultra-high performance concrete under ambient temperature change[J]. Acta Materiae Compositae Sinica,2021,38(10):3495-3503(in Chinese).
    [5]
    QIU L S, DONG S F, YU X, et al. Self-sensing ultra-high performance concrete for in-sit monitoring[J]. Sensors and Actuators A: Physical,2021,331:113049. doi: 10.1016/j.sna.2021.113049
    [6]
    许开成, 谢国强, 陈梦成, 等. 锂云母渣作为混凝土掺合料的制备工艺研究[J]. 混凝土, 2016(11):130-132. doi: 10.3969/j.issn.1002-3550.2016.11.035

    XU Kaicheng, XIE Guoqiang, CHEN Mengcheng, et al. Research on processing technology of lepidolite slag as admixture of concrete[J]. Concrete,2016(11):130-132(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.035
    [7]
    许开成, 毕丽苹, 陈梦成. 锂渣混凝土的配合比设计研究[J]. 混凝土, 2017(1):125-129. doi: 10.3969/j.issn.1002-3550.2017.01.031

    XU Kaicheng, BI Liping, CHEN Mengcheng. Study on mixproportion design of lithium slag concrete[J]. Concrete,2017(1):125-129(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.01.031
    [8]
    魏慧男, 刘铁军, 邹笃建, 等. 含废弃玻璃的绿色超高性能混凝土制备及性能[J]. 建筑材料学报, 2021, 24(3):492-498. doi: 10.3969/j.issn.1007-9629.2021.03.007

    WEI Huinan, LIU Tiejun, ZOU Dujian, et al. Preparation and properties of green ultra-high performance concrete containing waste glass[J]. Journal of Building Materials,2021,24(3):492-498(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.03.007
    [9]
    陈梦成, 袁明胜, 刘宇翔. 陶瓷粉混凝土正交设计试验研究[J]. 混凝土, 2018(4):102-106. doi: 10.3969/j.issn.1002-3550.2018.04.026

    CHEN Mengcheng, YUAN Mingsheng, LIU Yuxiang. Experimental study on orthogonal design of ceramic poowder concrete[J]. Concrete,2018(4):102-106(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.04.026
    [10]
    HEIDARI A, TAVAKOLI S, TAVAKOLI D. Reusing waste ceramic and waste sanitary ware in concrete as pozzolans with nano-silica and metakaolin[J]. International Journal of Sustainable Construction Engineering and Technology, 2019, 10(1): 55-67.
    [11]
    MEYER C. The greening of the concrete industry[J]. Cement and Concrete Composites,2009,31(8):601-605. doi: 10.1016/j.cemconcomp.2008.12.010
    [12]
    SUBASI S, ÖZTÜRK H, EMIROGLU M. Utilizing of waste ceramic powders as filler material in self-consolidating concrete[J]. Construction and Building Materials,2017,149:567-574. doi: 10.1016/j.conbuildmat.2017.05.180
    [13]
    LI L, LIU W F, YOU Q X, et al. Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials[J]. Journal of Cleaner Production,2020,259:120853. doi: 10.1016/j.jclepro.2020.120853
    [14]
    ATTAELMANAN M, KAMBAL M E M, MANSOUR M I. A study the effect of using ceramic waste powder as partial replacement for cement on concrete properties[J]. Journal of Karary University for Engineering and Science, 2021, 1(1): 1-7.
    [15]
    EL-DIEB A S, KANAAN D M. Ceramic waste powder an alternative cement replacement—Characterization and evaluation[J]. Sustainable Materials and Technologies,2018,17:e63.
    [16]
    BABRIA J P, PITRODA J R, VAGHELA K B. Effective use of ceramic waste powder as partial replacement of cement in establishing sustainable concrete[J]. Journal of Emerging Technologies and Innovative Research, 2019, 6(4): 337-348.
    [17]
    BHARGAV M, KANSAL R. Experimental investigation to substitute of cement with ceramic tiles powder in concrete[J]. International Journal for Research in Applied Science and Engineering Technology, 2020, 8(IX): 45-98.
    [18]
    LI L G, ZHUO Z Y, ZHU J, et al. Reutilizing ceramic polishing waste as powder filler in mortar to reduce cement content by 33% and increase strength by 85%[J]. Powder Technology,2019,355:119-126. doi: 10.1016/j.powtec.2019.07.043
    [19]
    MOHIT M, SHARIFI Y. Ceramic waste powder as alternative mortar-based cementitious material[J]. ACI Materials Journal,2019,116(6):107-116.
    [20]
    KUMAR V P, REDDY K C. Durability aspects of concrete by partial replacement of cement by ceramic waste[J]. International Journal of Civil Engineering,2017,8:22-30.
    [21]
    SCHRÖFL C, GRUBER M, PLANK J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)[J]. Cement and Concrete Research,2012,42(11):1401-1408. doi: 10.1016/j.cemconres.2012.08.013
    [22]
    龚建清. 超高性能混凝土的级配效应研究[D]. 长沙: 湖南大学, 2008.

    GONG Jianqing. Study on gradation effect of ultra high performance concrete[D]. Changsha: Hunan University, 2008(in Chinese).
    [23]
    苏艺凡. 高流态超高性能混凝土的制备及性能研究[J]. 混凝土世界, 2022(1):61-64. doi: 10.3969/j.issn.1674-7011.2022.01.013

    SU Yifan. Study on preparation and properties of high flow ultra-high performance concrete[J]. China Concrete,2022(1):61-64(in Chinese). doi: 10.3969/j.issn.1674-7011.2022.01.013
    [24]
    陈飞翔, 陈尚雷, 张国志, 等. 珊瑚礁砂制备超高性能混凝土的可行性研究[J]. 混凝土, 2020(7):65-69. doi: 10.3969/j.issn.1002-3550.2020.07.015

    CHEN Feixiang, CHEN Shanglei, ZHANG Guozhi, et al. Feasibility study on preparation of ultra high performance concrete with coral reef sand[J]. Concrete,2020(7):65-69(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.07.015
    [25]
    中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2003(in Chinese).
    [26]
    BORGES P H, FONSECA L F, NUNES V A, et al. Andreasen particle packing method on the development of geopolymer concrete for civil engineering[J]. Journal of Materials in Civil Engineering,2014,26(4):692-697. doi: 10.1061/(ASCE)MT.1943-5533.0000838
    [27]
    HMED T, ELCHALAKANI M, KARRECH A, et al. Development of ECO-UHPC with very-low-C3A cement and ground granulated blast-furnace slag[J]. Construction and Building Materials,2021,284:122787. doi: 10.1016/j.conbuildmat.2021.122787
    [28]
    YU R, SPIESZ P, BROUWERS H. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount[J]. Construction and Building Materials,2014,65:140-150. doi: 10.1016/j.conbuildmat.2014.04.063
    [29]
    PANE I, HANSEN W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis[J]. Cement and Concrete Research,2005,35(6):1155-1164. doi: 10.1016/j.cemconres.2004.10.027
    [30]
    GOLEWSKI G L. The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading[J]. Energies,2021,14(3):668. doi: 10.3390/en14030668
    [31]
    朱星曈, 耿欧, 朱思远. 废轮胎橡胶混凝土界面过渡区特征试验研究[J]. 硅酸盐通报, 2021, 40(2):573-578.

    ZHU Xingtong, GENG Ou, ZHU Siyuan. Characteristics of interface transition zone of waste tire rubber concrete[J]. Bulletin of the Chinese Ceramic Society,2021,40(2):573-578(in Chinese).
    [32]
    郝晓玉, 王卓. 粉煤灰对再生混凝土抗硫酸盐侵蚀及界面过渡区微观性能影响研究[J]. 混凝土, 2021(12):94-96. doi: 10.3969/j.issn.1002-3550.2021.12.020

    HAN Xiaoyu, WANG Zhuo. Effect of fly ash on sulfate erosion resistance of recycled concrete and microscopic properties of interface transition zone[J]. Concrete,2021(12):94-96(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.12.020
    [33]
    徐礼华, 余红芸, 池寅, 等. 钢纤维-水泥基界面过渡区纳米力学性能[J]. 硅酸盐学报, 2016, 44(8):1134-1146.

    XU Lihua, YU Hongyun, CHI Yin, et al. Nano-indentation character of interfacial transition zone between steel fiber and cement paste[J]. Journal of the Chinese Ceramic Society,2016,44(8):1134-1146(in Chinese).
    [34]
    HAN B G, ZHANG L Q, ZENG S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,95:100-109. doi: 10.1016/j.compositesa.2017.01.008
    [35]
    GARCIA D C, WANG K, FIGUEIREDO R B. The influences of quartz content and water-to-binder ratio on the microstructure and hardness of autoclaved Portland cement pastes[J]. Cement and Concrete Composites,2018,91:138-147. doi: 10.1016/j.cemconcomp.2018.05.010
    [36]
    LASSEUGUETTE E, BURNS S, SIMMONS D, et al. Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems[J]. Journal of Cleaner Production,2019,211:1228-1238. doi: 10.1016/j.jclepro.2018.11.240
    [37]
    YU J, LU C, LEUNG C K, et al. Mechanical properties of green structural concrete with ultrahigh-volume fly ash[J]. Construction and Building Materials,2017,147:510-518. doi: 10.1016/j.conbuildmat.2017.04.188
    [38]
    WU M, ZHANG Y S, JI Y S, et al. Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. Journal of Cleaner Production,2018,196:358-369. doi: 10.1016/j.jclepro.2018.06.079
    [39]
    ZHAO Y S, GAO J M, LIU C B, et al. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement[J]. Journal of Cleaner Production,2020,242:118521. doi: 10.1016/j.jclepro.2019.118521
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (891) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return