Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Siqi, YAN Chuanqi, ZHOU Shengxiong. Rheological properties and mechanism of fumed SiO2 modified asphalt[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002
Citation: LI Siqi, YAN Chuanqi, ZHOU Shengxiong. Rheological properties and mechanism of fumed SiO2 modified asphalt[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002

Rheological properties and mechanism of fumed SiO2 modified asphalt

doi: 10.13801/j.cnki.fhclxb.20230203.002
Funds:  National Natural Science Foundation of China (52008353)
  • Received Date: 2022-12-02
  • Accepted Date: 2023-01-10
  • Rev Recd Date: 2022-12-28
  • Available Online: 2023-02-03
  • Publish Date: 2023-11-01
  • Nano-silica (NS) modified asphalt is satisfactory in mechanical properties but is expensive. Fumed-silica (FS) is also a nanoscale material and the price is only 1/10 of NS. To evaluate the feasibility of FS replacing NS, using 3wt% original silica (OS), FS, hydrophobic nano silica (MNS) as modifier, the rheological properties of corresponding modified asphalt were studied compared with matrix asphalt (Esso, ES) by the multi-stress creep recovery test (MSCR), linear amplitude scanning test (LAS) and bent beam rheological test (BBR). The results show that the optimal modifier FS has the best effect on the rutting resistance at high temperature and the fatigue resistance at intermediate temperature for asphalt, and the least negative effect on the low temperature performance. The mechanism for these results was explored by SEM, temperature scanning test (TeS), variable temperature infrared spectroscopy (VT-IR), TGA and DSC. The intrinsic primary aggregates of FS and unique ES-hydroclusters system played a key role in the performance of FS-asphalt composite. Therefore, fumed SiO2 is a cost-effective nano-scale material used to modify asphalt.


  • loading
  • [1]
    NUÑEZ J Y M, DOMINGOS M D I, FAXINA A L. Susceptibi-lity of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking[J]. Construction and Building Materials,2014,73:509-514. doi: 10.1016/j.conbuildmat.2014.10.002
    LINK R E, SHENOY A. Fatigue testing and evaluation of asphalt binders using the dynamic shear rheometer[J]. Journal of Testing and Evaluation,2002,30:303-312. doi: 10.1520/JTE12320J
    SADEGHNEJAD M, SHAFABAKHSH G. Use of nano SiO2 and nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures[J]. Construction and Building Materials,2017,157:965-974. doi: 10.1016/j.conbuildmat.2017.09.163
    SALEH T A. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environmental Technology & Innovation,2020,20:101067.
    BONICA C, TORALDO E, ANDENA L, et al. The effects of fibers on the performance of bituminous mastics for road pavements[J]. Composites Part B: Engineering,2016,95:76-81. doi: 10.1016/j.compositesb.2016.03.069
    GALOOYAK S S, DABIR B, NAZARBEYGI A E, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites[J]. Construction and Building Materials,2010,24(3):300-307. doi: 10.1016/j.conbuildmat.2009.08.032
    KORDI Z, SHAFABAKHSH G. Evaluating mechanical properties of stone mastic asphalt modified with nano Fe2O3[J]. Construction and Building Materials,2017,134:530-539. doi: 10.1016/j.conbuildmat.2016.12.202
    SHAFABAKHSH G, MIRABDOLAZIMI S M, SADEGHNEJAD M. Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures[J]. Construction and Building Materials,2014,54:566-571. doi: 10.1016/j.conbuildmat.2013.12.064
    MOGHADAS NEJAD F, TANZADEH R, TANZADEH J, et al. Investigating the effect of nanoparticles on the rutting behaviour of hot-mix asphalt[J]. International Journal of Pavement Engineering,2016,17(4):353-362. doi: 10.1080/10298436.2014.993194
    FANG C, YU X, YU R, et al. Preparation and properties of isocyanate and nano particles composite modified asphalt[J]. Construction and Building Materials,2016,119:113-118. doi: 10.1016/j.conbuildmat.2016.04.099
    SALTAN M, TERZI S, KARAHANCER S. Examination of hot mix asphalt and binder performance modified with nano silica[J]. Construction and Building Materials,2017,156:976-984. doi: 10.1016/j.conbuildmat.2017.09.069
    DING H, ZHANG H, XIE Q, et al. Synthesis and characterization of nano-SiO2 hybrid poly(methyl methacrylate) nanocomposites as novel wax inhibitor of asphalt binder[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,653:130023. doi: 10.1016/j.colsurfa.2022.130023
    YARAHMADI A M, SHAFABAKHSH G, ASAKEREH A. Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures[J]. Construction and Building Materials,2022,317:126127. doi: 10.1016/j.conbuildmat.2021.126127
    MANFRO A L, STAUB DE MELO J V, VILLENA DEL CARPIO J A, et al. Permanent deformation performance under moisture effect of an asphalt mixture modified by calcium carbonate nanoparticles[J]. Construction and Building Materials,2022,342:128087. doi: 10.1016/j.conbuildmat.2022.128087
    MAMUYE Y, LIAO M C, DO N D. Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures[J]. Construction and Building Materials,2022,331:127304. doi: 10.1016/j.conbuildmat.2022.127304
    LI Z, GUO T, CHEN Y, et al. The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt[J]. Nanotechnology Reviews, 2021, 10(1): 1253-1265.
    周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5):2089-2105.

    ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica,2022,39(5):2089-2105(in Chinese).
    倪爱清, 朱坤坤, 王继辉. 纳米SiO2-NaOH-有机硅烷偶联剂表面改性对苎麻纤维/乙烯基酯树脂复合材料性能的影响[J]. 复合材料学报, 2019, 36(11):2579-2586.

    NI Aiqing, ZHU Kunkun, WANG Jihui. Effects of nano SiO2-NaOH-silane coupling agent surface treatment on behavior of ramie fiber/vinyl ester resin composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2579-2586(in Chinese).
    王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12):3079-3090.

    WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica,2020,37(12):3079-3090(in Chinese).
    LI X, WANG G X, JIANG X Z, et al. Investigation of performance and modification mechanism of ceramic-polishing-powder-modified asphalt mastic[J]. Road Materials and Pavement Design,2023,4(24):919-934.
    ZHAO D, GE S F, SENSES E, et al. Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites[J]. Macromolecules,2015,48(15):5433-5438. doi: 10.1021/acs.macromol.5b00962
    GÜRGEN S. Wear performance of UHMWPE based composites including nano-sized fumed silica[J]. Composites Part B: Engineering,2019,173:106967. doi: 10.1016/j.compositesb.2019.106967
    LIU X Q, BAO R Y, WU X J, et al. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid[J]. RSC Advances,2015,5(24):18367-18374. doi: 10.1039/C4RA16261G
    BARTHEL H, DREYER M, GOTTSCHALK-GAUDIG T, et al. Fumed silica-rheological additive for adhesives, resins, and paints[J]. Macromolecular Symposia, 2002, 187: 573-584.
    KIM K M, KIM H, KIM H J. Enhancing thermo-mechanical properties of epoxy composites using fumed silica with different surface treatment[J]. Multidisciplinary Digital Publishing Institute,2021,13(16):2691-2703.
    ZHAO J, WU D, HAN J Y, et al. Mechanical properties of fumed silica/HDPE composites[J]. Applied Mechanics and Materials,2014,633-634:427-430. doi: 10.4028/www.scientific.net/AMM.633-634.427
    VOLKOV D S, ROGOVA O B, PROSKURNIN M A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities[J]. Agronomy, 2021, 11(9): 1879-1908.
    ZHU J, GAO W, WANG B, et al. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2[J]. International Journal of Biological Macromolecules,2021,183:1371-1378. doi: 10.1016/j.ijbiomac.2021.05.118
    张益硕, 周仲魁, 杨顺景, 等. KH550改性膨润土对低浓度U(VI)的吸附[J]. 有色金属工程, 2022, 12(9):154-164. doi: 10.3969/j.issn.2095-1744.2022.09.21

    ZHANG Yishuo, ZHOU Zhongkui, YANG Shunjing, et al. Adsorption performance of KH550 modified bentonite low concentrations of U(VI)[J]. Nonferrous Metals Engineering,2022,12(9):154-164(in Chinese). doi: 10.3969/j.issn.2095-1744.2022.09.21
    ABED A H, OUDAH A M. Rheological properties of modified asphalt binder with nanosilica and SBS[J]. IOP Conference Series: Materials Science and Engineering,2018,433(1):012031.
    REZAEI S, ZIARI H, NOWBAKHT S. High-temperature functional analysis of bitumen modified with composite of nano-SiO2 and styrene butadiene styrene polymer[J]. Petroleum Science and Technology,2016,34(13):1195-1203. doi: 10.1080/10916466.2016.1188112
    REZAEI S, KHORDEHBINAN M, FAKHREFATEMI S M R, et al. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt[J]. Petroleum Science and Technology,2017,35(6):553-560. doi: 10.1080/10916466.2016.1270301
    American Society for Testing and Materials. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer: ASTM D7405—10[S]. West Conshohocken: ASTM International, 2010.
    XIA T, CHEN X, XU J, et al. Key role of network formation in rutting, fatigue and brittle performance of bitumen/PEG/MDI/SiO2 composites[J]. Construction and Building Materials,2021,296:123739. doi: 10.1016/j.conbuildmat.2021.123739
    American Society for Testing and Materials. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer: ASTM D7175—15[S]. West Conshohocken: ASTM International, 2017.
    American Association of State Highway and Transportation Officials. Standard method of test for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR): AASHTO T313[S]. Washington: AASHTO, 2022.
    SOENEN H, BESAMUSCA J, FISCHER H R, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests[J]. Materials and Structures,2014,47(7):1205-1220. doi: 10.1617/s11527-013-0123-4
    MIRSEPAHI M, TANZADEH J, GHANOON S A. Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer[J]. Construction and Building Materials,2020,233:117183. doi: 10.1016/j.conbuildmat.2019.117183
    罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6):165-171. doi: 10.3969/j.issn.1001-7372.2018.06.002

    LUO Rong, XU Yuan, LIU Hanqi, et al. Rheological mecha-nical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport,2018,31(6):165-171(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.06.002
    周鑫, 易玉华. 气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2023, 40(2): 852-859.

    ZHOU Xin, YI Yuhua. Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 852-859(in Chinese).
    ZHU C Z, ZHANG H L, XU G Q, et al. Aging rheological characteristics of SBR modified asphalt with multi-dimensional nanomaterials[J]. Construction and Building Materials,2017,151:388-393. doi: 10.1016/j.conbuildmat.2017.06.121
    CHERAGHIAN G, WISTUBA M P, KIANI S, et al. Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles[J]. Scientific Reports,2021,11(1):11455. doi: 10.1038/s41598-021-90620-w
    BALDINO N, GABRIELE D, ROSSI C O, et al. Low temperature rheology of polyphosphoric acid (PPA) added bitumen[J]. Construction and Building Materials,2012,36:592-596. doi: 10.1016/j.conbuildmat.2012.06.011
    MESHAL A S, FATMA A A. Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3[J]. Surfaces and Interfaces,2022,31:102055. doi: 10.1016/j.surfin.2022.102055
    CHAN C M, WU J S, LI J X, et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer,2002,43(10):2981-2992. doi: 10.1016/S0032-3861(02)00120-9
    American Society for Testing and Materials. Standard test method for assignment of the glass transition tempera-tures by differential scanning calorimetry: ASTM E1356—08[S]. West Conshohocken: ASTM International, 2014.
    American Society for Testing and Materials. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry: ASTM D 3418—12[S]. West Conshohocken: ASTM International, 2021.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (780) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint