Volume 39 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
WANG Anni, LIU Xiaogang, YUE Qingrui. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001
Citation: WANG Anni, LIU Xiaogang, YUE Qingrui. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001

Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review

doi: 10.13801/j.cnki.fhclxb.20220615.001
Funds:  National Key Research and Development Program of China (2021 YFB3704403); National Natural Science Foundation of China (52192663)
  • Received Date: 2022-04-22
  • Accepted Date: 2022-06-04
  • Rev Recd Date: 2022-05-15
  • Available Online: 2022-06-16
  • Publish Date: 2022-11-01
  • Carbon fiber reinforced polymer composite (CFRP) cables can replace steel cables due to their lightweight, high strength, and excellent corrosion and fatigue resistance to meet the needs of larger spans and harsher service environments for bridges. However, the poor resistance of the low-speed impact of CFRP cable makes it threatened by the impact from vehicles and falling rocks during its service life. In order to fully understand the impact performance of CFRP and promote the application of CFRP cables in engineering structures, this paper summarized the impact research status of CFRP and its cables, including the basic dynamic mechanical properties, impact response, and damage failure mechanism. The results show that CFRP has strain rate sensitivity, but the strain rate effect of CFRP is still unclear, and a mechanical property database covering the full strain rate range needs to be established. The research on the impact resistance of CFRP laminates is relatively comprehensive. However, the differences in cross-section form, large slenderness ratio, axial stress coupling, and other factors make the research conclusion of CFRP laminates not fully applicable to CFRP cables. Furthermore, current research mainly discusses the influence of impact energy, anchorage length, and temperature on the impact resistance of small tonnage CFRP cables, but the research on the impact resistance and damage failure mechanism of large tonnage CFRP cables is rarely reported. When the CFRP cable breaks under the impact of the vehicle, the peak force is much lower than its axial tensile braking force, and a strict anti-collision design should be carried out for the CFRP cable.

     

  • loading
  • [1]
    YANG Y, FAHMY M F, GUAN S, et al. Properties and appli-cations of FRP cable on long-span cable-supported bridges: A review[J]. Composites Part B: Engineering,2020,190:107934. doi: 10.1016/j.compositesb.2020.107934
    [2]
    FENG B, WANG X, WU Z S. Fatigue life assessment of FRP cable for long-span cable-stayed bridge[J]. Composite Structures,2019,210:159-166. doi: 10.1016/j.compstruct.2018.11.039
    [3]
    ZHAO J F, MEI K H, WU J, et al. Long-term mechanical properties of FRP tendon-anchor systems—A review[J]. Construction and Building Materials,2020,230:117017. doi: 10.1016/j.conbuildmat.2019.117017
    [4]
    LIU Y, ZWINGMANN B, SCHLAICH M. Carbon fiber reinforced polymer for cable structures—A review[J]. Polymers, 2015, 7(10): 2078-2099.
    [5]
    WU Q, ZHI X, LI Q, et al. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact[J]. International Journal of Impact Engineering,2019,127:135-153. doi: 10.1016/j.ijimpeng.2019.01.010
    [6]
    舒林, 许红胜, 曾毅杰, 等. 影响斜拉索运营寿命的各种因素分析[J]. 中外公路, 2017, 37(1):84-88.

    SHU Lin, XU Hongsheng, ZENG Yijie, et al. Analysis of various factors affecting operation life of stay cable[J]. Journal of China & Foreign Highway,2017,37(1):84-88(in Chinese).
    [7]
    方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020.

    FANG Yawei. Investigation on static and impact behavior of carbon fiber reinforced polymer bar with considering temperature effect[D]. Changsha: Hunan University, 2020(in Chinese).
    [8]
    MUGAHED A Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008
    [9]
    WANG X, WU Z, WU G, et al. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge[J]. Composites Part B: Engineering,2013,44(1):184-192. doi: 10.1016/j.compositesb.2012.06.001
    [10]
    CHOCRON S, CARPENTER A J, SCOTT N L, et al. Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations[J]. International Journal of Impact Engineering,2019,131:39-56. doi: 10.1016/j.ijimpeng.2019.05.002
    [11]
    FANG Y, FANG Z, JIANG R, et al. Effect of temperature on the transverse impact performance of preloaded CFRP wire[J]. Composite Structures,2020,231:111464. doi: 10.1016/j.compstruct.2019.111464
    [12]
    肖琳. CFRP层合板低速冲击行为与损伤机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    XIAO Lin. Research on low velocity impact behavior and damage mechanism of CFRP laminates[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [13]
    ZHANG S, CAPRANI C C, HEIDARPOUR A. Strain rate studies of pultruded glass fibre reinforced polymer material properties: A literature review[J]. Construction and Building Materials,2018,171:984-1004. doi: 10.1016/j.conbuildmat.2018.03.113
    [14]
    AHMED A, ZILLUR R M, OU Y, et al. A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures[J]. Construction and Building Materials,2021,294:123565. doi: 10.1016/j.conbuildmat.2021.123565
    [15]
    PERRY J I, WALLEY S M. Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A review[J]. Journal of Dynamic Behavior of Materials,2022,8:178-213. doi: 10.1007/s40870-022-00331-0
    [16]
    OU Y, ZHU D, ZHANG H, et al. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures[J]. Composites Part B: Engineering,2016,95:123-136. doi: 10.1016/j.compositesb.2016.03.085
    [17]
    CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates[J]. Carbon,2013,61:97-104. doi: 10.1016/j.carbon.2013.04.073
    [18]
    HOU J P, RUIZ C. Measurement of the properties of woven CFRP T300/914 at different strain rates[J]. Composites Science and Technology,2000,60(15):2829-2834. doi: 10.1016/S0266-3538(00)00151-2
    [19]
    TANIGUCHI N, NISHIWAKI T, KAWADA H. Tensile strength of unidirectional CFRP laminate under high strain rate[J]. Advanced Composite Materials,2007,16(2):167-180. doi: 10.1163/156855107780918937
    [20]
    AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. doi: 10.1016/j.compstruct.2012.09.032
    [21]
    ZHANG Y, SUN L, LI L, et al. Effects of strain rate and high temperature environment on the mechanical performance of carbon fiber reinforced thermoplastic composites fabri-cated by hot press molding[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105905. doi: 10.1016/j.compositesa.2020.105905
    [22]
    ZHANG X, SHI Y, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP lami-nates under different strain rates[J]. Composites Part B: Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [23]
    AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Engineering properties of CFRP laminate under high strain rates[J]. Composite Structures,2017,180:9-15. doi: 10.1016/j.compstruct.2017.08.005
    [24]
    GOMEZ-DEL R T, BARBERO E, ZAERA R, et al. Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar[J]. Composites Science and Technology, 2005, 65(1): 61-71.
    [25]
    ZHANG X, HAO H, SHI Y, et al. Static and dynamic material properties of CFRP/epoxy laminates[J]. Construction and Building Materials,2016,114:638-649. doi: 10.1016/j.conbuildmat.2016.04.003
    [26]
    THOMSON D, QUINO G, CUI H, et al. Strain-rate and off-axis loading effects on the fibre compression strength of CFRP laminates: Experiments and constitutive modelling[J]. Composites Science and Technology,2020,195:108210. doi: 10.1016/j.compscitech.2020.108210
    [27]
    张哲绎. 复合材料的动态能量吸收性能研究[D]. 长沙: 湖南大学, 2020.

    ZHANG Zheyi. Research on the dynamic energy absorption property of composite materials[D]. Changsha: Hunan University, 2020(in Chinese).
    [28]
    TAY T, ANG H, SHIM V J C S. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy[J]. Composite Structures,1995,33(4):201-210. doi: 10.1016/0263-8223(95)00116-6
    [29]
    SHOKRIEH M M, OMIDI M J. Investigation of strain rate effects on in-plane shear properties of glass/epoxy composites[J]. Composite Structures,2009,91(1):95-102. doi: 10.1016/j.compstruct.2009.04.035
    [30]
    许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究[J]. 实验力学, 2001(1):26-33. doi: 10.3969/j.issn.1001-4888.2001.01.005

    XU Muhua, WANG Xiaojun, ZHANG Gangming, et al. Experimental study on dynamic compressive mechanical properties of Kevlar fiber reinforced composites[J]. Journal of Experimental Mechanics,2001(1):26-33(in Chinese). doi: 10.3969/j.issn.1001-4888.2001.01.005
    [31]
    韩小平, 韩省亮, 李华, 等. 复合材料率相关本构模型的研究[J]. 机械科学与技术, 1999(1):125. doi: 10.3321/j.issn:1003-8728.1999.01.044

    HAN Xiaoping, HAN Xingliang, LI Hua, et al. Research on the rate-dependent constitutive model of composite materials[J]. Mechanical Science and Technology for Aerospace Engineering,1999(1):125(in Chinese). doi: 10.3321/j.issn:1003-8728.1999.01.044
    [32]
    方盈盈. 高应变率下碳纤维复合材料动态力学性能研究[D]. 大连: 大连理工大学, 2018.

    FANG Yingying. Study on dynamic mechanical properties of carbon fiber reinforced composite materials under high strain rate[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [33]
    ZHAO J, GUO L, ZHANG L, et al. Experimental investigations on the in-plane dynamic compressive behavior and upper limit of constant strain rate for 2D twill weave carbon fiber reinforced composite[J]. Composites Part B: Engineering,2021,220:108993. doi: 10.1016/j.compositesb.2021.108993
    [34]
    KARIM M R. Constitutive modeling and failure criteria of carbon-fiber reinforced polymers under high strain rates[D]. Ohio: University of Akron, 2005.
    [35]
    刘柳. 抗高冲击载荷CFRP层合结构力学性能研究[D]. 北京: 北京理工大学, 2016.

    LIU Liu. Mechanical property study of CFRP laminates subjected to high impact compressive loads[D]. Beijing: Beijing Institute of Technology, 2016(in Chinese).
    [36]
    ATAS C, SAYMAN O. An overall view on impact response of woven fabric composite plates[J]. Composite Structures,2008,82(3):336-345. doi: 10.1016/j.compstruct.2007.01.014
    [37]
    SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: A review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021
    [38]
    BORIA S, SCATTINA A, BELINGARDI G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures,2017,167:63-75. doi: 10.1016/j.compstruct.2017.01.083
    [39]
    SIMEOLI G, ACIERNO D, MEOLA C, et al. The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates[J]. Composites Part B: Engineering,2014,62:88-96. doi: 10.1016/j.compositesb.2014.02.018
    [40]
    KISS P, GLINZ J, STADLBAUER W, et al. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study[J]. Composites Part B: Engineering,2021,215:108844. doi: 10.1016/j.compositesb.2021.108844
    [41]
    SORRENTINO L, DE VASCONCELLOS D S, D'AURIA M, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B: Engineering,2017,113:100-110. doi: 10.1016/j.compositesb.2017.01.010
    [42]
    SAGHAFI H, FOTOUHI M, MINAK G. Improvement of the impact properties of composite laminates by means of nano-modification of the matrix—A review[J]. Applied Sciences,2018,8(12):2406. doi: 10.3390/app8122406
    [43]
    ADAK N C, CHHETRI S, KUILA T, et al. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J]. Composites Part B: Engineering,2018,149:22-30. doi: 10.1016/j.compositesb.2018.05.009
    [44]
    DELFOSSE D, POURSARTIP A. Energy-based approach to impact damage in CFRP laminates[J]. Composites Part A: Applied Science and Manufacturing,1997,28(7):647-655. doi: 10.1016/S1359-835X(96)00151-0
    [45]
    VIEILLE B, CASADO V M, BOUVET C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study[J]. Composite Structures,2013,101:9-21. doi: 10.1016/j.compstruct.2013.01.025
    [46]
    MITREVSKI T, MARSHALL I H, THOMSON R. The influence of impactor shape on the damage to composite lami-nates[J]. Composite Structures,2006,76(1):116-122.
    [47]
    ZHANG J, LI Z, ZHANG Q, et al. Study of fiber modulus effect on impact energy absorption characteristics of composite laminates at normal and oblique impacts[J]. Materials Research Express,2019,6(8):085610. doi: 10.1088/2053-1591/ab1ad4
    [48]
    ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B: Engineering,2020,182:107626. doi: 10.1016/j.compositesb.2019.107626
    [49]
    马名旭. 碳纤维增强树脂基复合材料湿热环境下冲击损伤的研究[D]. 天津: 中国民航大学, 2016.

    MA Mingxu. Study of the impact injury of carbon fiber-reinforced polymer composites in moist heat environment[D]. Tianjin: Civil Aviation University of China, 2016(in Chinese).
    [50]
    AGRAWAL S, SINGH K K, SARKAR P K. Impact damage on fibre-reinforced polymer matrix composite—A review[J]. Journal of Composite Materials,2013,48(3):317-332.
    [51]
    BHUDOLIA S K, JOSHI S C. Low-velocity impact response of carbon fibre composites with novel liquid methylmethacrylate thermoplastic matrix[J]. Composite Structures,2018,203:696-708. doi: 10.1016/j.compstruct.2018.07.066
    [52]
    SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B: Engineering,2018,133:112-121. doi: 10.1016/j.compositesb.2017.09.008
    [53]
    PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571. doi: 10.1016/j.compstruct.2019.111571
    [54]
    WANG X, HU B, FENG Y, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites[J]. Composites Science and Technology,2008,68(2):444-450. doi: 10.1016/j.compscitech.2007.06.016
    [55]
    沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004(5):140-145.

    SHEN Zhen, ZHANG Zilong, WANG Jin, et al. Characterization of damage resistance and damage tolerance behaviour of composite laminates[J]. Acta Materiae Compositae Sinica, 2004(5):140-145(in Chinese).
    [56]
    ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007
    [57]
    TIBERKAK R, BACHENE M, RECHAK S, et al. Damage prediction in composite plates subjected to low velocity impact[J]. Composite Structures,2008,83(1):73-82. doi: 10.1016/j.compstruct.2007.03.007
    [58]
    张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021.

    ZHANG Chen. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D]. Shanghai: Donghua University, 2021(in Chinese).
    [59]
    SURESH K C, ARUMUGAM V, SANTULLI C. Characterization of indentation damage resistance of hybrid composite laminates using acoustic emission monitoring[J]. Composites Part B: Engineering,2017,111:165-178. doi: 10.1016/j.compositesb.2016.12.012
    [60]
    向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90. doi: 10.15951/j.tmgcxb.2015.12.012

    XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaciors of CFRP cable and its anchoring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese). doi: 10.15951/j.tmgcxb.2015.12.012
    [61]
    向宇. RPC的抗疲劳性能与CFRP索的抗冲击性能研究[D]. 长沙: 湖南大学, 2017.

    XIANG Yu. Investigation on fatigue behavior of RPC and impact behavior of CFRP cables[D]. Changsha: Hunan University, 2017(in Chinese).
    [62]
    王常林. 碳纤维拉索及其锚固系统横向受力性能试验研究[D]. 长沙: 湖南大学, 2015.

    WANG Changlin. Experimental research on behavior of CFRP cable and anchorage subjecting to lateral force[D]. Changsha: Hunan University, 2015(in Chinese).
    [63]
    XIANG Y, FANG Z, WANG C, et al. Experimental investigations on impact behavior of CFRP cables under pretension[J]. Journal of Composites for Construction,2017,21(2):04016087. doi: 10.1061/(ASCE)CC.1943-5614.0000745
    [64]
    黄道斌. 碳纤维拉索的温度效应及车撞响应研究[D]. 长沙: 湖南大学, 2019.

    HUANG Daobin. Investigation on temperature effect and vehicle impact response of CFRP cables[D]. Changsha: Hunan University, 2019(in Chinese).
    [65]
    FANG Y, FANG Z, JIANG R, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction, 2019, 23(5): 04019041.
    [66]
    XIANG Y, FANG Z, FANG Y. Single and multiple impact behavior of CFRP cables under pretension[J]. Construction and Building Materials,2017,140:521-533. doi: 10.1016/j.conbuildmat.2017.02.112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (1818) PDF downloads(300) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return