Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
LUO Linghuan, LIN Xiangde, JIANG Jiayi, et al. Research progress of superhydrophobic flexible strain sensors in human motion monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3837-3851. doi: 10.13801/j.cnki.fhclxb.20230222.001
Citation: LUO Linghuan, LIN Xiangde, JIANG Jiayi, et al. Research progress of superhydrophobic flexible strain sensors in human motion monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3837-3851. doi: 10.13801/j.cnki.fhclxb.20230222.001

Research progress of superhydrophobic flexible strain sensors in human motion monitoring

doi: 10.13801/j.cnki.fhclxb.20230222.001
Funds:  Shanghai Natural Science Foundation (19ZR1474300); External Mentorship for Research Cadre of Shanghai University of Medical and Health Sciences (2021-4); Visiting Scholar in Tongji University (2022)
  • Received Date: 2022-11-22
  • Accepted Date: 2023-02-14
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-02-22
  • Publish Date: 2023-07-15
  • A flexible strain sensor is a device that converts changes in external stress into electrical signals. It overcomes the shortcomings of traditional rigid sensors such as high hardness and poor human adaptability. As a wearable device, it has great development prospects in the field of human motion monitoring. However, in harsh conditions or extreme environments, there are still risks such as signal output distortion and easy corrosion. The superhydrophobic flexible strain sensor combines the water repellency, surface self-cleaning, anti-corrosion and anti-fouling of the superhydrophobic coating with the high ductility and high sensitivity of the flexible strain sensor, which enhances the performance of the sensor and broadens the applications in human motion monitoring. This paper reviews the basic performance parameters of superhydrophobic flexible strain sensors, the commonly used construction materials and construction methods as well as their functions and applications in human motion monitoring, and provides perspectives on this field.

     

  • loading
  • [1]
    WANG W, YANG S, DING K, et al. Biomaterials- and biostructures inspired high-performance flexible stretchable strain sensors: A review[J]. Chemical Engineering Journal,2021,425:129949. doi: 10.1016/j.cej.2021.129949
    [2]
    PYO S, LEE J, BAE K, et al. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications[J]. Advanced Materials,2021,33(47):e2005902. doi: 10.1002/adma.202005902
    [3]
    LIU X, WEI Y, QIU Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring[J]. Micromachines (Basel),2021,12(6):695. doi: 10.3390/mi12060695
    [4]
    SERVATI A, ZOU L, WANG Z J, et al. Novel flexible wearable sensor materials and signal processing for vital sign and human activity monitoring[J]. Sensors (Basel),2017,17(7):1622. doi: 10.3390/s17071622
    [5]
    GE G, HUANG W, SHAO J, et al. Recent progress of flexible and wearable strain sensors for human-motion monitoring[J]. Journal of Semiconductors,2018,39(1):15554-15564.
    [6]
    SUN L, GUO J, CHEN H, et al. Tailoring materials with specific wettability in biomedical engineering[J]. Advanced Science (Weinh),2021,8(19):e2100126. doi: 10.1002/advs.202100126
    [7]
    ZHANG W, WANG D, SUN Z, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews,2021,50(6):4031-4061. doi: 10.1039/D0CS00751J
    [8]
    ZHU H, HUANG Y, LOU X, et al. Bioinspired superwetting surfaces for biosensing[J]. View,2020,2(1):1032640.
    [9]
    FAN H, GUO Z. Bioinspired surfaces with wettability: Biomolecule adhesion behaviors[J]. Biomaterials Science,2020,8(6):1502-1535. doi: 10.1039/C9BM01729A
    [10]
    DUAN L, D'HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application[J]. Progress in Materials Science,2020,114:100617. doi: 10.1016/j.pmatsci.2019.100617
    [11]
    LIU L, JIAO Z, ZHANG J, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces,2020,13(1):1967-1978.
    [12]
    WANG X, YU J, CUI Y, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical,2021,330:112838. doi: 10.1016/j.sna.2021.112838
    [13]
    GAO J, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal,2020,381:122778. doi: 10.1016/j.cej.2019.122778
    [14]
    SOURI H, BANERJEE H, JUSUFI A, et al. Wearable and stretchable strain sensors: Materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems,2020,2(8):2000039. doi: 10.1002/aisy.202000039
    [15]
    LIU Y F, LI Y Q, HUANG P, et al. On the evaluation of the sensitivity coefficient of strain sensors[J]. Advanced Electronic Materials,2018,4(12):1800353. doi: 10.1002/aelm.201800353
    [16]
    HAN F, LI M, YE H, et al. Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors[J]. Nanomaterials (Basel),2021,11(5):1220. doi: 10.3390/nano11051220
    [17]
    LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): e1901924.
    [18]
    CHU Z, JIAO W, HUANG Y, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring[J]. Journal of Materials Chemistry A,2021,9(15):9634-9643. doi: 10.1039/D0TA11959H
    [19]
    邢任权, 闫静, 杨光, 等. 纤维/纱线柔性电阻式应变传感器的研究进展[J]. 产业用纺织品, 2022, 40(1):1-7. doi: 10.3969/j.issn.1004-7093.2022.01.001

    XING Renquan, YAN Jing, YANG Guang, et al. Research progress on flexible resistive strain sensors for fibers/yarns[J]. Technical Textiles,2022,40(1):1-7(in Chinese). doi: 10.3969/j.issn.1004-7093.2022.01.001
    [20]
    LI S, XU R, WANG J, et al. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity[J]. Journal of Colloid & Interface Science,2022,617:372-382.
    [21]
    AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755
    [22]
    GAO W C, WU W, CHEN C Z, et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring[J]. ACS Applied Materials and Interfaces,2022,14(1):1874-1884. doi: 10.1021/acsami.1c17565
    [23]
    胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22. doi: 10.13801/j.cnki.fhclxb.20210729.004

    HU Hailong, MA Yalun, ZHANG Fan, et al. Advances in flexible nanocomposite piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.004
    [24]
    WANG L, HUANG X, WANG D, et al. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range[J]. Chemical Engineering Journal,2021,405:127025. doi: 10.1016/j.cej.2020.127025
    [25]
    KHALID M A U, CHANG S H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review[J]. Composite Structures,2022,284:115214. doi: 10.1016/j.compstruct.2022.115214
    [26]
    LI L, BAI Y, LI L, et al. A superhydrophobic smart coating for flexible and wearable sensing electronics[J]. Advanced Materials,2017,29(43):1702517. doi: 10.1002/adma.201702517
    [27]
    DING Y R, XUE C H, FAN Q Q, et al. Fabrication of superhydrophobic conductive film at air/water interface for flexible and wearable sensors[J]. Chemical Engineering Journal,2021,404:126489. doi: 10.1016/j.cej.2020.126489
    [28]
    王志磊. 超亲水、超疏水表面的研究进展[J]. 当代化工, 2010, 39(5):590-593. doi: 10.3969/j.issn.1671-0460.2010.05.030

    WANG Zhilei. Advances in research on superhydrophilic and superhydrophobic surfaces[J]. Contemporary Chemical Industry,2010,39(5):590-593(in Chinese). doi: 10.3969/j.issn.1671-0460.2010.05.030
    [29]
    ZHAO H, GAO W C, LI Q, et al. Recent advances in superhydrophobic polyurethane: Preparations and applications[J]. Advances in Colloid and Interface Science,2022,303:102644. doi: 10.1016/j.cis.2022.102644
    [30]
    张秋霞, 龚复学, 董楠楠. 有机氟化物等离子体处理制备超耐腐蚀聚氯乙烯及性能研究[J]. 塑料科技, 2021, 49(2):44-47. doi: 10.15925/j.cnki.issn1005-3360.2021.02.011

    ZHANG Qiuxia, GONG Fuxue, DONG Nannan. Preparation of super corrosion resistant polyvinyl chloride by organofluoride plasma treatment and performance study[J]. Plastic Technology,2021,49(2):44-47(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2021.02.011
    [31]
    WANG Q, SUN G, TONG Q, et al. Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications[J]. Chemical Engineering Journal,2021,426:130829. doi: 10.1016/j.cej.2021.130829
    [32]
    LIN L, CHOI Y, CHEN T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring[J]. Chemical Engineering Journal,2021,419:129513. doi: 10.1016/j.cej.2021.129513
    [33]
    WANG P, WEI W, LI Z, et al. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance[J]. Journal of Materials Chemistry A,2020,8(6):3509-3516. doi: 10.1039/C9TA13281C
    [34]
    MA L, WANG J, HE J, et al. Biotemplated fabrication of a multifunctional superwettable shape memory film for wearable sensing electronics and smart liquid droplet manipulation[J]. ACS Applied Materials and Interfaces,2021,13(26):31285-31297. doi: 10.1021/acsami.1c08319
    [35]
    LIU K, YANG C, SONG L, et al. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite[J]. Composites Science and Technology,2022,218:109148. doi: 10.1016/j.compscitech.2021.109148
    [36]
    MA Y, TIAN P, BOUNMYXAY M, et al. Calcium carbonate@silica composite with superhydrophobic properties[J]. Molecules,2021,26(23):7180. doi: 10.3390/molecules26237180
    [37]
    ALLIONE M, LIMONGI T, MARINI M, et al. Micro/nanopatterned superhydrophobic surfaces fabrication for biomolecules and biomaterials manipulation and analysis[J]. Micromachines (Basel),2021,12(12):1501. doi: 10.3390/mi12121501
    [38]
    GAO J, LI B, HUANG X, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal,2019,373:298-306. doi: 10.1016/j.cej.2019.05.045
    [39]
    REN Z, YANG J, QI D, et al. Flexible sensors based on organic-inorganic hybrid materials[J]. Advanced Materials Technologies,2021,6(4):2000889. doi: 10.1002/admt.202000889
    [40]
    YAN T, WANG Z, PAN Z J. Flexible strain sensors fabricated using carbon-based nanomaterials: A review[J]. Current Opinion in Solid State and Materials Science,2018,22(6):213-228. doi: 10.1016/j.cossms.2018.11.001
    [41]
    LIN L, WANG L, LI B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors[J]. Chemical Engineering Journal,2020,385:123391. doi: 10.1016/j.cej.2019.123391
    [42]
    王军庆, 李龙, 钱祥宇. 基于导电聚合物柔性超级电容器电极材料的研究进展[J]. 合成纤维, 2020, 49(8):51-56. doi: 10.16090/j.cnki.hcxw.2020.08.017

    WANG Junqin, LI Long, QIAN Xiangyu. Research progress of flexible supercapacitor electrode materials based on conducting polymers[J]. Synthetic Fiber,2020,49(8):51-56(in Chinese). doi: 10.16090/j.cnki.hcxw.2020.08.017
    [43]
    HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,642:128676. doi: 10.1016/j.colsurfa.2022.128676
    [44]
    WEN N, ZHANG L, JIANG D, et al. Emerging flexible sensors based on nanomaterials: Recent status and applications[J]. Journal of Materials Chemistry A,2020,8(48):25499-25527. doi: 10.1039/D0TA09556G
    [45]
    LIU Y, WANG H, ZHAO W, et al. Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features[J]. Sensors (Basel),2018,18(2):645. doi: 10.3390/s18020645
    [46]
    JOO H, JUNG D, SUNWOO S H, et al. Material design and fabrication strategies for stretchable metallic nanocomposites[J]. Small,2020,16(11):e1906270. doi: 10.1002/smll.201906270
    [47]
    PAVEL I A, LAKARD S, LAKARD B. Flexible sensors based on conductive polymers[J]. Chemosensors,2022,10(3):97. doi: 10.3390/chemosensors10030097
    [48]
    CHENG M, ZHU G, ZHANG F, et al. A review of flexible force sensors for human health monitoring[J]. Journal of Advanced Research,2020,26:53-68. doi: 10.1016/j.jare.2020.07.001
    [49]
    王鲁凯, 冯军宗, 李良军, 等. 疏水改性聚酰亚胺的研究进展[J]. 材料导报, 2018, 32(S2):264-269.

    WANG Lukai, FENG Junzong, LI Liangjun, et al. Progress in the research of hydrophobically modified polyimide[J]. Materials Guide,2018,32(S2):264-269(in Chinese).
    [50]
    魏子尊. 聚氨酯复合材料在柔性传感器领域的应用与研究进展[J]. 塑料科技, 2021, 49(8):109-112.

    WEI Zizun. Application and research progress of polyurethane composites in the field of flexible sensors[J]. Plastic Technology,2021,49(8):109-112(in Chinese).
    [51]
    王志刚, 徐琴琴, 林润泽, 等. 基于银/石墨烯纳米复合材料的柔性压力传感器—材料制备和微纳结构构建[J]. 化工进展, 2021, 40(6):3300-3313. doi: 10.16085/j.issn.1000-6613.2020-1310

    WANG Zhigang, XU Qinqin, LIN Runze, et al. Flexible pressure sensors based on silver/graphene nanocomposites— Material preparation and micro and nano structure construction[J]. Chemical Progress,2021,40(6):3300-3313(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1310
    [52]
    LIU Y, SHENG Z, HUANG J, et al. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities[J]. Chemical Engeering Journal,2022,432:134370. doi: 10.1016/j.cej.2021.134370
    [53]
    HEO J S, HOSSAIN M F, KIM I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review[J]. Sensors (Basel),2020,20(14):3927. doi: 10.3390/s20143927
    [54]
    WANG P, SUN B, LIANG Y, et al. A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application[J]. Journal of Materials Chemistry A,2018,6(22):10404-10410. doi: 10.1039/C8TA01923A
    [55]
    LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials,2019,29(44):1905197. doi: 10.1002/adfm.201905197
    [56]
    YANG H, LEOW W R, CHEN X. 3D printing of flexible electronic devices[J]. Small Methods,2018,2(1):1700259. doi: 10.1002/smtd.201700259
    [57]
    LI H, SONG H, LONG M, et al. Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors[J]. Nanoscale,2021,13(4):2542-2555. doi: 10.1039/D0NR07525F
    [58]
    ZHAO J, ZHAO Y, PENG Y, et al. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications[J]. Optics & Laser Technology,2022,146:107473.
    [59]
    DINH LE T S, AN J, HUANG Y, et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors[J]. ACS Nano,2019,13(11):13293-13303. doi: 10.1021/acsnano.9b06354
    [60]
    NIU H, ZHANG H, YUE W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: A review[J]. Small,2021,17(41):e2100804. doi: 10.1002/smll.202100804
    [61]
    陈莉, 张艳琳, 刘皓, 等. 智能可穿戴产品用柔性传感器研究进展[J]. 针织工业, 2021, 394(11):81-85. doi: 10.3969/j.issn.1000-4033.2021.11.020

    CHEN Li, ZHANG Yanlin, LIU Hao, et al. Research progress on flexible sensors for smart wearable products[J]. Knitting Industry,2021,394(11):81-85(in Chinese). doi: 10.3969/j.issn.1000-4033.2021.11.020
    [62]
    BAEK S, JANG H, KIM S Y, et al. Flexible piezocapacitive sensors based on wrinkled microstructures: Toward low-cost fabrication of pressure sensors over large areas[J]. RSC Advances,2017,7(63):39420-39426. doi: 10.1039/C7RA06997A
    [63]
    LIU K, YANG C, ZHANG S, et al. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance[J]. Materials & Design,2022,218:110689.
    [64]
    SAHOO B N, WOO J, ALGADI H, et al. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications[J]. Advanced Materials Technologies,2019,4(10):1900230. doi: 10.1002/admt.201900230
    [65]
    彭军, 李津, 李伟, 等. 柔性可拉伸应变传感器研究进展与应用[J]. 化工新型材料, 2018, 46(11):39-43.

    PENG Jun, LI Jin, LI Wei, et al. Research progress and application of flexible stretchable strain sensors[J]. New Chemical Materials,2018,46(11):39-43(in Chinese).
    [66]
    TAI H, DUAN Z, WANG Y, et al. Paper-based sensors for gas, humidity, and strain detections: A review[J]. ACS Applied Materials & Interfaces,2020,12(28):31037-31053.
    [67]
    LIAO X, ZHANG Z, LIAO Q, et al. Flexible and printable paper-based strain sensors for wearable and large-area green electronics[J]. Nanoscale,2016,8(26):13025-13032. doi: 10.1039/C6NR02172G
    [68]
    BU Y, SHEN T, YANG W, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T MXene/paper for human-motion monitoring and E-skin[J]. Science Bulletin,2021,66(18):1849-1857. doi: 10.1016/j.scib.2021.04.041
    [69]
    DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces,2019,11(7):6685-6704.
    [70]
    LIANG Z, ZHANG H, HUANG R, et al. Superhydrophobic and elastic 3D conductive sponge made from electrospun nanofibers and reduced graphene oxide for sweatproof wearable tactile pressure sensor[J]. Polymer,2021,230:124025. doi: 10.1016/j.polymer.2021.124025
    [71]
    PEI X, WANG J, ZHANG J, et al. Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,628:127257. doi: 10.1016/j.colsurfa.2021.127257
    [72]
    WANG L, LUO J, CHEN Y, et al. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors[J]. ACS Applied Materials & Interfaces,2019,11(19):17774-17783. doi: 10.1021/acsami.9b03545
    [73]
    JIA S, DENG S, QING Y, et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection[J]. Chemical Engineering Journal,2021,410:128418. doi: 10.1016/j.cej.2021.128418
    [74]
    XU Q, ZHANG W, DONG C, et al. Biomimetic self-cleaning surfaces: Synthesis, mechanism and applications[J]. Journal of the Royal Society Interface,2016,13(122):0300.
    [75]
    NI Y, HUANG J, LI S, et al. Robust superhydrophobic rGO/PPy/PDMS coatings on a polyurethane sponge for underwater pressure and temperature sensing[J]. ACS Applied Materials & Interfaces,2021,13(44):53271-53281.
    [76]
    DONG J, WANG D, PENG Y, et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring[J]. Nano Energy,2022,97:107160. doi: 10.1016/j.nanoen.2022.107160
    [77]
    FALDE E J, YOHE S T, COLSON Y L, et al. Superhydrophobic materials for biomedical applications[J]. Biomaterials,2016,104:87-103. doi: 10.1016/j.biomaterials.2016.06.050
    [78]
    LIN J, CAI X, LIU Z, et al. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state[J]. Advanced Functional Materials,2020,30(23):2000398. doi: 10.1002/adfm.202000398
    [79]
    PARK C, KIM T, SAMUEL E P, et al. Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater[J]. Journal of Power Sources,2021,506:230142. doi: 10.1016/j.jpowsour.2021.230142
    [80]
    DAI Z, DING S, LEI M, et al. A superhydrophobic and anti-corrosion strain sensor for robust underwater applications[J]. Journal of Materials Chemistry A,2021,9(27):15282-15293. doi: 10.1039/D1TA04259A
    [81]
    CHU Z, JIAO W, LI J, et al. A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance[J]. Chemical Engineering Journal,2021,421:129873. doi: 10.1016/j.cej.2021.129873
    [82]
    WANG L, XIA M, WANG D, et al. Bioinspired superhydrophobic and durable octadecanoic acid/Ag nanoparticle-decorated rubber composites for high-performance strain sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(21):7245-7254.
    [83]
    LI Q, LIU H, ZHANG S, et al. Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property[J]. ACS Applied Materials & Interfaces,2019,11(24):21904-21914.
    [84]
    LIU H, LI Q, BU Y, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy,2019,66:104143. doi: 10.1016/j.nanoen.2019.104143
    [85]
    ZHU T, NI Y, ZHAO K, et al. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming[J]. ACS Nano,2022,16(11):18018-18026. doi: 10.1021/acsnano.2c08325
    [86]
    ZHAI H, XU L, LIU Z, et al. Twisted graphene fibre based brethable, wettable and washable anti-jamming strain sensor for underwater motion sensing[J]. Chemical Engineering Journal,2022,439:135502. doi: 10.1016/j.cej.2022.135502
    [87]
    YANG Z, LI H, ZHANG S, et al. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal,2021,425:130462. doi: 10.1016/j.cej.2021.130462
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (740) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return