Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI Chengliang, YANG Chao, NI Aiqing, et al. Application and development of composite materials in large-scale wind turbine blade[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001
Citation: LI Chengliang, YANG Chao, NI Aiqing, et al. Application and development of composite materials in large-scale wind turbine blade[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1274-1284. doi: 10.13801/j.cnki.fhclxb.20220715.001

Application and development of composite materials in large-scale wind turbine blade

doi: 10.13801/j.cnki.fhclxb.20220715.001
  • Received Date: 2022-05-10
  • Accepted Date: 2022-07-03
  • Rev Recd Date: 2022-06-14
  • Available Online: 2022-07-15
  • Publish Date: 2023-03-15
  • With the proposal of "30.60" Double Carbon Project, the wind power industry has ushered in new development opportunities. As China's wind power enters the era of parity, the cost of power per kWh is reduced with the continuous increase of the single capacity of wind turbine system, which also leads to significant increase in the wind blade length. Wind blade is now facing the contradictive requirements of "large-scale, low-cost and lightweight". Both new material and innovative processing technology are of great importance to promote wind power to the parity era. On one hand, several key raw materials, including reinforcing fiber, matrix resin, core and structural adhesive, that affect the performance and cost of wind blade are systematically examined. On the other hand, high quality blades and green environmental protection are of great concern for the wind power industry, which indicates that new processing technology such as prepreg and pultrusion are playing more and more important role in future large scale blade manufacture. Thereafter, with systematic consideration of the materials and processing technologies in the development of wind blade, some suggestions are proposed on the introduction of these materials and technologies, in order to provide some reference for future large-scale wind blade development.


  • loading
  • [1]
    MORTEN D, BEN B. Global wind report 2022[R]. Brussels: Global Wind Energy Council, 2021: 110-140.
    ALASTAIR D, MARC B. Global offshore wind report 2021[R]. Brussels: Global Wind Energy Council, 2021: 19-30.
    WOOD M. Global wind power market outlook update: Q1 2022[R]. Global conclusions on Q1 forecast, 2022: 7-8.
    REDDY S S P, SURESH R, HANAMANTRAYGPINDA M B, et al. Use of composite materials and hybrid composites in wind turbine blades[J]. Materials Today: Proceedings,2021,46:2827-2830. doi: 10.1016/j.matpr.2021.02.745
    AUBRYN C, ANNIKA E, ERIC L. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options[J]. Resources, Conservation & Recycling, 2021, 168: 105439.
    COGNE V, PONT S, DOBREV I, et al. Bioinspired turbine blades offer new perspectives for wind energy[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,2017,473(2198):20160726.S. doi: 10.1098/rspa.2016.0726
    MURRAY R E, SCOTT J, DAVID S, et al. Techno-economic analysis of a megawatt-scale thermoplastic resin wind tubine blade[J]. Renewable Energy, 2019, 131: 111-119.
    BATURKIN D, AHMAT H O, MASMOUDI R, et al.Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation & Recycling, 2021, 174: 105807.
    GABHALE R R, CHANDRA B D. Comprehensive study of composite materials used in wind turbine blade[J]. International Journal of Latest Trends in Engineering and Technology,2015,6(2):146-155.
    PINTO T H L, GUL W, TORRES L A G, et al. Experimental and numerical comparison of impact behavior between thermoplastic and thermoset composite for wind turbine blades[J]. Materials, 2021, 14: 6377.
    MURRAY R E, SWAN D, SNOWBERG D, et al. , Manufacturing a 9-meter thermoplastic composite wind turbine blade[C]. ASC 32nd Technical Conference. West Lafayette: Purdue University, 2017.
    PETTERSSON J. Analysis and design of an adhesive joint in wind turbine blades[D]. Sweden: Lund University, 2016.
    ZHOU H F, DOU H Y, QIN L Z, et al. A review of full scale structural testing of wind turbine blades[J]. Renewable & Sustainable Energy Reviews,2014,33(2):177-187.
    李林致. 刍议风力发电的发展现状及趋势[J]. 中国新通信, 2018, 20(19):203-204. doi: 10.3969/j.issn.1673-4866.2018.19.180

    LI Linzhi. Discussion on the development status and trend of wind power generation[J]. China New Communications,2018,20(19):203-204(in Chinese). doi: 10.3969/j.issn.1673-4866.2018.19.180
    张文毓. 风电叶片复合材料及其应用[J]. 上海电气技术, 2017, 10(4):55-57. doi: 10.3969/j.issn.1674-540X.2017.04.014

    ZHANG Wenyu. Wind power blade composite material and its application[J]. Shanghai Electric Technology,2017,10(4):55-57(in Chinese). doi: 10.3969/j.issn.1674-540X.2017.04.014
    林刚. 2020全球碳纤维复合材料市场报告[Z]. 2020: 25-26.

    LIN Gang. 2020 Global carbon fiber composites market report[Z]. 2020: 25-26(in Chinese).
    CRISTIAN L T, EDGAR E M, RODOLFO R B. Effects of the vacuum moulding process on the mechanical properties of cotton/epoxy composite[J]. Fibres and Textile in Eastern Europe,2018,26(3):93-97.
    JOAQUIM V, CARLOS G, JAVIER L. Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium[J]. Journal of Composite Materials,2017,51(5):687-703. doi: 10.1177/0021998316649783
    MOHANT P, KANNY K. Mechanical properties and failure analysis of short kenaf fibre reinforced composites processed by resin casting and vacuum infusion methods[J]. Polymers and Polymer Composites,2018,26(2):189-204. doi: 10.1177/096739111802600207
    徐立波. VARI工艺影响因素简析[J]. 轻工科技, 2015, 31(6):28-29.

    XU Libo. Brief analysis of the factors affecting VARI process[J]. Light Industry Technology,2015,31(6):28-29(in Chinese).
    潘利剑, 刘卫平, 陈萍, 等. 真空辅助成型工艺中预成型体的厚度变化与过流控制[J]. 复合材料学报, 2012, 29(5):244-248. doi: 10.13801/j.cnki.fhclxb.2012.05.011

    PAN Lijian, LIU Weiping, CHEN Ping, et al. Thickness variation and overcurrent control of preforms in vacuum assisted forming process[J]. Acta Materiae Compositae Sinica,2012,29(5):244-248(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.05.011
    COUSINS D S, SUZUKI Y, MURRAY R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades[J]. Journal of Cleaner Production, 2019, 209: 1252-1263.
    李书乡, 马全胜, 张顺. 中国高性能碳纤维产业的创新发展[J]. 科技导报, 2018, 36(19):73-80.

    LI Shuxiang, MA Quansheng, ZHANG Shun. Development of high performance carbon fiber industry in China[J]. Science & Technology Review,2018,36(19):73-80(in Chinese).
    阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6):152-157. doi: 10.13475/j.fzxb.20180802906

    RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress in recycling and reuse of carbon fiber reinforced resin composites[J]. Journal of Textile Research,2019,40(6):152-157(in Chinese). doi: 10.13475/j.fzxb.20180802906
    ALEXANDER S, NATALIE R, LMAN T. Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process[J]. Applied Composite Materials,2017,24(5):1137-1149. doi: 10.1007/s10443-016-9575-3
    BUCUR I O, MALAEL I, BREBAN S. Horizontal-axis wind turbine blades manufacture with composite materials[C]//IOP Conference Series: Materials Science and Engineering. Iasi, 2020.
    FRACASSIF T, DONADON M V. Simulation of vauum assisted resin transfer moling prcess through dynamics ystemanalysis[J]. Journal of Composite Materials,2018,52(27):3759-3771. doi: 10.1177/0021998318770000
    邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9.

    XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2013,30(2):1-9(in Chinese).
    罗益锋, 罗晰旻. 近期碳纤维及其复合材料的新发展[J]. 高科技纤维与应用, 2014, 39(1):1-9. doi: 10.3969/j.issn.1007-9815.2014.01.001

    LUO Yifeng, LUO Ximin. New developments of recent carbon fiber and their composite materials[J]. Hi-Tech Fiber & Application,2014,39(1):1-9(in Chinese). doi: 10.3969/j.issn.1007-9815.2014.01.001
    高奇. 新形势下我国碳纤维产业发展探讨[J]. 合成纤维工业, 2019, 42(4):58-63.

    GAO Qi. Discussion on development of China carbon fiber industry under new situation[J]. China Synthetic Fiber Industry,2019,42(4):58-63(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (1035) PDF downloads(179) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint