Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LIU Xueru, JIN Biao, MENG Longyue. Research progress of adrenaline electrochemical sensors based on carbon nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008
Citation: LIU Xueru, JIN Biao, MENG Longyue. Research progress of adrenaline electrochemical sensors based on carbon nanomaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1340-1353. doi: 10.13801/j.cnki.fhclxb.20220623.008

Research progress of adrenaline electrochemical sensors based on carbon nanomaterials

doi: 10.13801/j.cnki.fhclxb.20220623.008
Funds:  National Natural Science Foundation of China (22166034; 51703192; 22064017); Theme Guidance Project of Jilin Provincial Department of Science and Technology (YDZJ202201ZYTS542); Yanbian University Innovation Tean Project
  • Received Date: 2022-04-25
  • Accepted Date: 2022-06-20
  • Rev Recd Date: 2022-05-30
  • Available Online: 2022-06-24
  • Publish Date: 2023-03-15
  • Adrenaline (AD), as a neurotransmitter, plays an important role in the human body, and its level directly affects the health of the human body, so the rapid detection of AD is of great practical significance. Among the detection methods, electrochemical methods have the advantages of high sensitivity, fast detection speed, and simple operation, so the construction of electrochemical sensors for adrenaline with excellent performance has become a research hotspot. In order to improve the electrochemical performance of sensors, carbon nanomaterials have been widely adopted as novel materials to modify sensors, and have achieved great progress in low detection limit, high sensitivity and promising clinical application. Starting from carbon nanomaterials such as carbon dots, graphene, and carbon nanoparticles, the electroredox mechanism of AD on the electrode surface was analyzed. Prospects are presented for future detection in order to obtain more efficient electrochemical sensors for adrenaline.


  • loading
  • [1]
    LI J B, WANG X J, DUAN H M, et al. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites[J]. Materials Science and Engineering: C,2016,64:391-398. doi: 10.1016/j.msec.2016.04.003
    REDDY K K, SATYANARAYANA M, GOUD K Y, et al. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine[J]. Materials Science and Engineering: C,2017,79:93-99. doi: 10.1016/j.msec.2017.05.012
    ZHENG J W, YANG Y, TIAN S H, et al. The dynamics of hippocampal sensory gating during the development of morphine dependence and withdrawal in rats[J]. Neuroscience Letters,2005,382:164-168. doi: 10.1016/j.neulet.2005.03.010
    NAKAO N, ITAKURA T. Fetal tissue transplants in animal models of Huntington's disease: The effects on damaged neuronal circuitry and behavioral deficits[J]. Progress in Neurobiology,2000,61:313-338. doi: 10.1016/S0301-0082(99)00058-1
    MO J W, OGOR B B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1, 2-phenylenediamine) -coated carbon fiber[J]. Analytical Chemistry,2001,73:1196-1202. doi: 10.1021/ac0010882
    HEMME W J. A review of epinephrine administration in pediatric anaphylaxis[J]. Journal of Emergency Nursing,2012,38:392. doi: 10.1016/j.jen.2011.12.012
    RAZAVIAN A S, GHOREISHI S M, ESMAEILY A S, et al. Simultaneous sensing of L-tyrosine and epinephrine using a glassy carbon electrode modified with nafion and CeO2 nanoparticles[J]. Microchim Acta,2014,181:1947-1955. doi: 10.1007/s00604-014-1284-8
    MATTIOLI I A, CERVINI P, CAVALHEIRO É T G. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: A comparative study[J]. Microchim Acta,2020,187:318. doi: 10.1007/s00604-020-04259-x
    ALAYASH A S, MUHAMAD Y H, GHAFOURI S A. Spectrophotometric determination of epinephrine in pharmaceutical preparations using praseodymium as mediating metals[J]. Baghdad Science Journal,2010,8(1):110-117.
    BERGMANN M L, SADJADI S, SCHMEDES A. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,2017,1057:118-123. doi: 10.1016/j.jchromb.2017.04.011
    WOO H I, YANG J S, OH H J, et al. A simple and rapid analytical method based on solid-phase extraction and liquid chromatography - tandem mass spectrometry for the simultaneous determination of free catecholamines and metanephrines in urine and its application to routine clinical analysis[J]. Clinical Biochem,2016,49:579-585.
    ZHAO Y S, ZHAO S L, HUANG J M, et al. Quantum dot-enhanced chemilumine-scence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta,2011,85:2650-2654. doi: 10.1016/j.talanta.2011.08.032
    ZHENG R J, ZHAO C H, ZHONG J H, et al. Determination of epinephrine using a novel sensitive electrochemiluminescence sensor based on ZnO nanoparticles modified pencil graphite electrode[J]. International Journal of Electrochem Science,2019,14:9380.
    ZHANG C C, DU X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease[J]. Frontiers in Chemistry,2020,8:651. doi: 10.3389/fchem.2020.00651
    BANERJEE S, MECARCKEN S, HOSSAIN M F, et al. Electrochemical detection of neurotransmitters[J]. Biosensors,2020,10:101. doi: 10.3390/bios10080101
    GUO L L, QIN L J, XU B, et al. Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells[J]. Biochemical Engineering Journal,2019,148:57-64. doi: 10.1016/j.bej.2019.04.018
    NAM K T , PARK S. Electrochemical cell in the brain[J]. Analytical Chemistry, 2020, 15: 625-626.
    CHEN S M, PENG K Z. The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt (II) hexacyanoferrate films[J]. Journal of Electroanalytical Chemistry,2003,547:179-189. doi: 10.1016/S0022-0728(03)00220-1
    HAWLEY M D, TATAWAWADI S V, PIEKARSKI S, et al. Electrochemical studies of the oxidation pathways of catecholamines[J]. Journal of the American Chemical Society,1967,89:447. doi: 10.1021/ja00978a051
    FIKE R R, CURRAN D J. Determination of catecholamines by thin-layer linear sweep voltammetry[J]. Analytical Chemistry,1977,49:1205. doi: 10.1021/ac50016a037
    CIOLKOWSKI E L, MANESS K M, CAHILL P S, et al. Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes[J]. Analytical Chemistry,1994,66:3611-3617. doi: 10.1021/ac00093a013
    LIN J X, LU H, DUAN Y C, et al. Fabrication of bimetallic ZIF/carbon nanofibers composite for electrochemical sensing of adrenaline[J]. Journal of Materials Science,2022,57:6629-6639. doi: 10.1007/s10853-021-06766-5
    ŁUCZAK T. Gold electrodes modified with self-assembled layers made of sulphur compounds and gold nanoparticles used for selective electrocatalytic oxidation of catecholamine in the presence of interfering ascorbic and uric acids[J]. International Journal of Electrochemistry,2011,2011:179474.
    AMATORE C, SAVEANT J M, TESSIER D. Charge transfer at partially blocked surfaces: a model for the case of microscopic active and inactive sites[J]. Journal of Electroanalytical Chemistry,1983,147:39-51. doi: 10.1016/S0022-0728(83)80054-0
    ZHENG L Z, WU S G, LIN X Q, et al. Electrochemical characterization of poly(N-acetylaniline)/Nafion composite film in neutral and basic aqueous solutions[J]. Electroanalysis,2003,15(3):191-195. doi: 10.1002/elan.200390023
    WANG H S, HUANG D Q, LIU R M. Study on the electrochemical behavior of epinephrine at a poly (3-methylthiophene)-modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry,2004,570:83-90. doi: 10.1016/j.jelechem.2004.03.019
    CHEN S M, CHEN J Y, VASANTHA V S. Electrochemical preparation of epinephrine/Nafion chemically modified electrodes and their electrocatalytic oxidation of ascorbic acid and dopamine[J]. Electrochimica Acta,2006,52:455-465. doi: 10.1016/j.electacta.2006.05.027
    BACIL R P, GARCIA P H M, SERRANO S H P. New insights on the electrochemical mechanism of epinephrine on glassy carbon electrode[J]. Journal of Electroanalytical Chemistry,2022,908:116111. doi: 10.1016/j.jelechem.2022.116111
    KOUR R, ARYA S, YOUNA S J, et al. Review—Recent advances in carbon nanomaterials as electrochemical biosensors[J]. Journal of The Electrochemical Society,2020,167:037555. doi: 10.1149/1945-7111/ab6bc4
    DING C, ZHU A, TIAN Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research,2014,47:20-30. doi: 10.1021/ar400023s
    CANEVARI T C, NAKAMURA M, CINCOTTO F H. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions[J]. Electrochimica Acta,2016,209:464-470. doi: 10.1016/j.electacta.2016.05.108
    TASHKHOURIAN J, NAMIAMA S F, SHAMSIPUR M. Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine[J]. Journal of Molecular Liquids,2018,266:548-556. doi: 10.1016/j.molliq.2018.06.093
    SHANKAR S S, SHEREEMA R M, RAMACHANDRAN V, et al. Carbon quantum dot-modified carbon paste electrode-based sensor for selective and sensitive determination of adrenaline[J]. ACS Omega,2019,4:7903-7910. doi: 10.1021/acsomega.9b00230
    BALUTA S, LESIAK A, CABAJ J. Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection[J]. Electroanalysis,2018,30:1-11. doi: 10.1002/elan.201880101
    YOLA M L, ATAR N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine[J]. Composites Part B: Engineering,2019,175:107113. doi: 10.1016/j.compositesb.2019.107113
    YANG W, RATINAC K R, RINGER S P, et al. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene?[J]. Angewandte Chemie International Edition,2010,49(12):2114-2138. doi: 10.1002/anie.200903463
    STANKOVICH S, PINER R D, CHEN X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16:155-158. doi: 10.1039/B512799H
    SAINZ R, DELPOZO M, VILAS V M, et al. Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: Determination of epinephrine[J]. Scientific Reports,2020,10:14614. doi: 10.1038/s41598-020-71554-1
    MARCU M, SPATARU T, CALDERONMORENO J M, et al. Anodic voltammetry of epinephrine at graphene-modified conductive diamond electrodes and its analytical application[J]. Journal of the Electrochemical Society,2018,165(11):523-529. doi: 10.1149/2.1321811jes
    CUI F, ZHANG X L. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites[J]. Journal of Electroanalytical Chemistry,2012,669:35-41. doi: 10.1016/j.jelechem.2012.01.021
    DING M, ZHOU Y M, LIANG X Z, et al. An electrochemical sensor based on graphene/poly (brilliant cresyl blue) nanocomposite for determination of epinephrine[J]. Journal of Electroanalytical Chemistry,2016,763:25-31. doi: 10.1016/j.jelechem.2015.12.040
    DEVNANI H, SATSANGEE S P, JAIN R. A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine[J]. Ionics,2016,22:943-956. doi: 10.1007/s11581-015-1620-y
    MCCREERY R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews,2008,108:2646-2687. doi: 10.1021/cr068076m
    AMBROSI A, BONANNI A, SOFER Z, et al. Electrochemistry at chemically modified graphenes[J]. Chemistry a European Journal,2011,17:10763-10770. doi: 10.1002/chem.201101117
    BONANNI A, AMBROSI A, PUMERA M. Nucleic acid functionalized graphene for biosensing[J]. Chemistry a European Journal,2012,18(6):1668-1673. doi: 10.1002/chem.201102850
    POPE M A, PUNCKT C, AKSAY I A. Intrinsic capacitance and redox activity of functionalized graphene sheets[J]. The Journal of Physical Chemistry C,2011,115(41):20326-20334. doi: 10.1021/jp2068667
    JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: The new membrane material[J]. Applied Materialstoday,2015,1(1):1-12.
    MUTI M, SHARMA S, ERDEM A, et al. Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor[J]. Electroanalysis,2011,23:272-279. doi: 10.1002/elan.201000425
    BROWMSON D A C, SMISH G C, BANKS C E. Graphene oxide electrochemistry: The electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis[J]. Society Open Science,2017,4(11):2054-5703.
    SADHANA R, ABRAHAM P, VIADHARAN A. Solar exfoliated graphene oxide: A platform for electrochemical sensing of epinephrine[J]. Current Analytical Chemistry,2020,16:393-403. doi: 10.2174/1573411015666190104110928
    TEZERANI M D, BENVIDI A, FIROUZABADI A D, et al. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine[J]. Measurement,2017,101:183-189. doi: 10.1016/j.measurement.2017.01.029
    JOSEPH T, THOMAS T, THOMAS N. Graphene oxide modified carbon paste electrode for handy and ultra-sensitive determination of epinephrine in the presence of uric and ascorbic acids[J]. Electroanalysis,2020,32(11):2463-2473. doi: 10.1002/elan.202060085
    MARDANI L, VARDINI M T, ESHAGHI M, et al. Preparation of molecularly imprinted-grafted magnetic graphen oxide-gold nanocomposite and its application to design electrochemical sensor for determination of epinephrine[J]. Analytical Sciences,2019,35(11):1173-1182. doi: 10.2116/analsci.19P107
    LIU D, LONG Y T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2015,7:24063-24068.
    BAI J, HONG W J, BAI H. Electrochemically reduced graphene oxide: Preparation, composites, and applications[J]. Carbon,2022,191:301-332. doi: 10.1016/j.carbon.2022.01.056
    ZAIDI S A. Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using graphene[J]. Electrochimica Acta,2018,274(1):370-377.
    GHANBARI K, GHORBANI F, BONYADI S. Simultaneous electroanalytical sensing of dopamine and epinephrine using TiO2/reduced graphene oxide nanocomposite modified glassy carbon electrode[J]. Nanochemistry Research,2021,6(2):223-238.
    RAMU A G, UMAR A, IBRAHIM A A, et al. Synthesis of porous 2D layered nickel oxide-reduced graphene oxide (NiO-rGO) hybrid composite for the efficient electrochemical detection of epinephrine in biological fluid[J]. Environmental Research,2021,200:111366. doi: 10.1016/j.envres.2021.111366
    RENJINI S, ABRAHAM P, KUMAR T J, et al. Graphene oxide supported palladium nanoparticle as an electrochemical sensor for epinephrine[J]. AIP Conference Proceedings,2019,2162:020071.
    CHEN S X, SHI M, XU Q, et al. Ti3C2Tx MXene/nitrogen-doped reduced graphene oxide composite: A high-performance electrochemical sensing platform for adrenaline detection[J]. Nanotechnology,2021,32:265501. doi: 10.1088/1361-6528/abef94
    ZHAO A D, CHEN Z W, ZHAO C Q, et al. Recent advances in bioapplications of C-dots[J]. Carbon,2015,85:309-327. doi: 10.1016/j.carbon.2014.12.045
    SZOT K, OPALLO M. (Bio) electroanalytical applications of carbon nanoparticles[J]. Electroanalysis,2016,28:46-57. doi: 10.1002/elan.201500478
    ASADIAN E, GHALKHANI M, SHAHROKHIAN S. Electrochemical sensing based on carbon nanoparticles: A review[J]. Sensors & Actuators B: Chemical,2019,293:183-209.
    MAZLOUM A M, RAJABZADEH N. Carbon nanoparticles and a new derivative of hydroquinone for modification of a carbon paste electrode for simultaneous determination of epinephrine and acetaminophen[J]. Analytical Methods,2012,4:2127-2133. doi: 10.1039/c2ay25063b
    NDAMANISHA J C, GUO L. Ordered mesoporous carbon for electrochemical sensing: A review[J]. Analytica Chi-mica Acta,2012,747(17):19-28.
    JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412:169. doi: 10.1038/35084046
    JIA N, WANG Z, YANG G, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238. doi: 10.1016/j.elecom.2006.08.050
    HARTMANN M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials,2005,17(18):4577-4593. doi: 10.1021/cm0485658
    CHOI M, RYOO R. Ordered nanoporous polymer-carbon composites[J]. Nature Materials,2003,2:473-476. doi: 10.1038/nmat923
    WALCARIUS A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie,2005,8:693-712. doi: 10.1016/j.crci.2004.10.003
    BANKS C E, COMPTON R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study[J]. Analyst,2005,130:1232-1239. doi: 10.1039/b508702c
    WALCARIUS A, MANDLER D, COX J A, et al. Exciting new directions in the intersection of functionalized solgel materials with electrochemistry[J]. Journal of Materials Chemistry,2005,15:3663-3689. doi: 10.1039/b504839g
    WALCARIUS A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes[J]. Trends in Analytical Chemistry,2012,38:79-97. doi: 10.1016/j.trac.2012.05.003
    ZHOU M, GUO L P, HOU Y, et al. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine[J]. Electrochimica Acta,2008,53:4176-4184. doi: 10.1016/j.electacta.2007.12.077
    YANG X, ZHAO P C, XIE Z G, et al. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon/nickel oxide nanocomposite[J]. Talanta,2021,233:122545. doi: 10.1016/j.talanta.2021.122545
    AHAMMAD A J, LEE J J, RAHMAN M. Electrochemical sensors based on carbon nanotubes[J]. Sensors,2009,9(4):2289-2319. doi: 10.3390/s90402289
    CHO G, AZZOUZI S, ZUCCHI G, et al. Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water-a review[J]. Sensors,2021,22(1):218. doi: 10.3390/s22010218
    GHICA M E, BRETT C M A. Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes[J]. Analytical Letters,2013,46(9):1379-1393. doi: 10.1080/00032719.2012.762584
    ZARE H R, MORADIYAN B, SHEKARI Z, et al. Application of L-DOPA modified carbon nanotubes as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen and tyrosine[J]. Measurement,2016,90:510-518. doi: 10.1016/j.measurement.2016.05.024
    CHETANKUMAR K, SWAMY B E K, NAIK H S B. MgO and MWCNTs amplified electrochemical sensor for guanine, adenine and epinephrine[J]. Materials Chemistry and Physics,2021,267:124610. doi: 10.1016/j.matchemphys.2021.124610
    PANDURANGACHAR M, SWAMY B E K. Electro-chemical deposition of 1-butyl-4- methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid[J]. Journal of Molecular Liquids,2010,158(1):13-17.
    TAVANA T, KHALILZADEH M A, KARIMI M H, et al. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode[J]. Journal of Molecular Liquids,2012,168:69-74. doi: 10.1016/j.molliq.2012.01.009
    WU Y, FENG X, ZHOU S H, et al. Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid[J]. Microchim Acta,2013,180:1325-1332. doi: 10.1007/s00604-013-1063-y
    CHAROTHRA M M, MANJUNATHA J G. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode[J]. Materials Chemistry and Physics,2021,262(1):124293.
    KHOT G, KABOLI M, CELIKEL T, et al. Electrochemical detection of adrenaline and hydrogen peroxide on carbon nanotube electrodes[J]. Surface Innovation,2021,8(24):457-486.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (1017) PDF downloads(62) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint