Citation: | WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1300-1310. doi: 10.13801/j.cnki.fhclxb.20220612.001 |
[1] |
HAN Y H, YUAN J, ZHU Y H, et al. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for Enhanced microwave absorption[J]. Journal of Colloid and Interface Science,2021,609:746-754.
|
[2] |
HUANG Z H, CHENG J, ZHANG H Y, et al. High-perfor-mance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band[J]. Journal of Materials Science & Technology,2022,107:155-164. doi: 10.1016/j.jmst.2021.08.005
|
[3] |
ABDALLA I, ELHASSAN A, YU J Y, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption[J]. Carbon,2020,157:703-713. doi: 10.1016/j.carbon.2019.11.004
|
[4] |
FAN D L, LI N X, LI M G, et al. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance[J]. Chemical Engineering Journal,2022,427:131635. doi: 10.1016/j.cej.2021.131635
|
[5] |
YUAN Y, YIN W L, YANG M L, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon,2018,130:59-68. doi: 10.1016/j.carbon.2017.12.122
|
[6] |
GONG P, HAO L, LI Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption[J]. Carbon,2021,185:272-281. doi: 10.1016/j.carbon.2021.09.014
|
[7] |
JEON I, LEE M, LEE S W, et al. Morphology and mechanical properties of polyketone/polycarbonate blends compatibilized with SEBS and polyamide[J]. Macromolecular Research,2019,27(8):827-832. doi: 10.1007/s13233-019-7109-1
|
[8] |
ABDALLA I, SHEN J L, YU J Y, et al. Co3O4/carbon compo-site nanofibrous membrane enabled high-efficiency electromagnetic wave absorption[J]. Scientific Reports,2018,8(1):12402. doi: 10.1038/s41598-018-30871-2
|
[9] |
FAN Q, ZHANG L G, XING H L, et al. Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake[J]. Journal of Materials Science: Materials in Electronics,2020,31(4):3005-3016. doi: 10.1007/s10854-019-02844-2
|
[10] |
HE N, YANG X F, JI R, et al. Polarization and matching modulation of peapod-like Cu/C nanowires to improve microwave absorption[J]. Journal of Alloys and Compounds,2020,822:153633. doi: 10.1016/j.jallcom.2019.153633
|
[11] |
YANG Z N, LUO F, HU Y, et al. Dielectric and microwave absorption properties of TiO2/Al2O3 coatings and improved microwave absorption by FSS incorporation[J]. Journal of Alloys and Compounds,2016,678:527-532. doi: 10.1016/j.jallcom.2016.04.031
|
[12] |
CHEN J B, ZHENG J, HUANG Q Q, et al. Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers[J]. Journal of Materials Science and Technology,2021,94:239-246. doi: 10.1016/j.jmst.2021.03.072
|
[13] |
HUANG Y, YUAN X, CHEN M, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces,2018,10(51):44731-44740. doi: 10.1021/acsami.8b16938
|
[14] |
ESTEVEZ D, QIN F X, QUAN L, et al. Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption[J]. Carbon,2018,132:486-494. doi: 10.1016/j.carbon.2018.02.083
|
[15] |
DEERAJ B D S, GEORGE G, DHINESHBABU N R, et al. Electrospun ZrO2@carbon nanofiber mats and their epoxy composites as effective EMI shields in Ku band[J]. Materials Research Bulletin,2021,144:111477. doi: 10.1016/j.materresbull.2021.111477
|
[16] |
NA K H, JANG K P, KIM S W, et al. Fabrication of electrospun Ni0.5Zn0.5Fe2O4 nanofibers using polyvinyl pyrrolidone precursors and electromagnetic wave absorption performance improvement[J]. Polymers (Basel),2021,13(23):4247. doi: 10.3390/polym13234247
|
[17] |
CHEN Q, LI D, LIAO X, et al. Polymer-derived lightweight SiBCN ceramic nanofibers with high microwave absorption performance[J]. ACS Applied Materials & Interfaces,2021,13(29):34889-34898. doi: 10.1021/acsami.1c07912
|
[18] |
廖子健, 童周禹, 钟国麟, 等. 静电纺丝技术制备纳米纤维吸波材料的研究进展[J]. 化工新型材料, 2021, 49(11):11-15.
LIAO Zijian, TONG Zhouyu, ZHONG Guolin, et al. Research progress on electrospinning preparation technology for nanofiber absorbing material[J]. New Chemical Materials,2021,49(11):11-15(in Chinese).
|
[19] |
QIN M, ZHANG L, WU H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9: 2105553.
|
[20] |
IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials, 2020, 30(47): 2000883.
|
[21] |
ZOU L, ZHANG S, LI X, et al. Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding[J]. Advanced Materials Interfaces,2016,3(5):1500476. doi: 10.1002/admi.201500476
|
[22] |
钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7):14-23.
QIAN Wei, HE Daping, LI Baowen. Recent progress on graphene-based materials for electromagnetic interference shielding applications[J]. Journal of Materials Engi-neering,2020,48(7):14-23(in Chinese).
|
[23] |
CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823. doi: 10.1016/j.coco.2021.100823
|
[24] |
程金波, 赵海波, 李蒙恩, 等. 碳基吸波材料的研究进展[J]. 中国材料进展, 2019, 38(9):897-905. doi: 10.7502/j.issn.1674-3962.201904003
CHENG Jinbo, ZHAO Haibo, LI Meng'en, et al. Research progress on carbon-based microwave absorption materials[J]. Materials China,2019,38(9):897-905(in Chinese). doi: 10.7502/j.issn.1674-3962.201904003
|
[25] |
LIU X, HUANG Y, ZHAO X, et al. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2022,616:347-359. doi: 10.1016/j.jcis.2022.02.062
|
[26] |
WANG Y, DU Y, WU B, et al. Fabrication of PPy nanosphere/rGO composites via a facile self-assembly strategy for durable microwave absorption[J]. Polymers (Basel),2018,10(9):998. doi: 10.3390/polym10090998
|
[27] |
LI J Y, DAI B S, QI Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals[J]. Journal of Alloys and Compounds,2021,877:160132. doi: 10.1016/j.jallcom.2021.160132
|
[28] |
QIAO J, ZHANG X, LIU C, et al. Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption[J]. Carbon,2022,191:525-534. doi: 10.1016/j.carbon.2022.02.024
|
[29] |
LIAO Z, MA M, TONG Z, et al. Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2021,602:602-611. doi: 10.1016/j.jcis.2021.06.042
|
[30] |
WANG H, HE D Y, QIU J, et al. PAN/W18O49/Ag nano-fibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad tempera-ture tolerance and good thermal isolating capacity[J]. Composites Part B: Engineering,2022,236:109793. doi: 10.1016/j.compositesb.2022.109793
|
[31] |
YANG M, JIA X T, HE D Y, et al. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding[J]. ACS Applied Electronic Materials,2021,3(5):2067-2078. doi: 10.1021/acsaelm.1c00076
|
[32] |
LIU Y, ZENG Z H, ZHENG S N, et al. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocompo-site fibers for electromagnetic wave absorption[J]. Compo-sites Part B: Engineering,2022,235:109800. doi: 10.1016/j.compositesb.2022.109800
|
[33] |
CHEN J, ZHENG J, HUANG Q, et al. Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles[J]. ACS Applied Materials & Interfaces,2021,13(30):36182-36189. doi: 10.1021/acsami.1c09430
|
[34] |
WANG Y P, ZHANG Y Y, TAO J N, et al. Co0.2Fe2.8O4/C composite nanofibers with designable 3D hierarchical architecture for high-performance electromagnetic wave absorption[J]. Ceramics International,2021,47(16):23275-23284. doi: 10.1016/j.ceramint.2021.05.040
|
[35] |
SHEN Y Q, ZHANG F, SONG P F, et al. Design and synthesis of magnetic porous carbon nanofibers with excellent microwave absorption[J]. Journal of Alloys and Compounds,2022,903:163971. doi: 10.1016/j.jallcom.2022.163971
|
[36] |
DONG Y, LIN H M, ZHOU D, et al. Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J]. Electrochim Acta,2015,159:116-123. doi: 10.1016/j.electacta.2015.01.152
|
[37] |
LI M H, FAN X M, XU H L, et al. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance[J]. Journal of Materials Science & Technology,2020,59:164-172. doi: 10.1016/j.jmst.2020.04.048
|
[38] |
ABDALLA I, YU J Y, LI Z L, et al. Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption[J]. Composites Part B: Engi-neering,2018,155:397-404. doi: 10.1016/j.compositesb.2018.09.026
|
[39] |
KIM M, KIM S, SEONG Y C, et al. Multiwalled carbon nanotube buckypaper/polyacrylonitrile nanofiber composite membranes for electromagnetic interference shielding[J]. ACS Applied Nano Materials,2021,4(1):729-738. doi: 10.1021/acsanm.0c03040
|
[40] |
ZHANG L K, CHEN Y, LIU Q, et al. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding[J]. Journal of Materials Science & Technology,2022,111:57-65. doi: 10.1016/j.jmst.2021.08.090
|
[41] |
CAO X Y, ZHANG J, CHEN S W, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
|
[42] |
JIN S Y, KIM M H, JEONG Y G, et al. Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers[J]. Materials & Design,2017,124:69-77.
|
[43] |
HUO Y S, ZHAO K, PENG M, et al. Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to promote microwave attenuation ability[J]. Journal of Alloys and Compounds,2022,891:162006. doi: 10.1016/j.jallcom.2021.162006
|
[44] |
ZHAO Y J, ZHANG Y N, YANG C R, et al. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption[J]. Carbon,2021,171:474-483. doi: 10.1016/j.carbon.2020.09.040
|
[45] |
ABDALLA I, SALIM A, ZHU M M, et al. Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency[J]. ACS Applied Materials& Interfaces,2018,10(51):44561-44569. doi: 10.1021/acsami.8b17514
|
[46] |
ELHASSAN A, ABDALLA I, YU J Y, et al. Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,392:123646.
|
[47] |
GUO R, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084-3094. doi: 10.1021/acsami.1c21272
|
[48] |
CUI Y, XU K, ZHU B, et al. Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas[J]. Journal of Alloys and Compounds,2022,907:164453. doi: 10.1016/j.jallcom.2022.164453
|
[49] |
WANG T T, CHENG L Hollow hierarchical TiO2-SnO2-TiO2 composite nanofibers with increased active-sites and charge transfer for enhanced acetone sensing perfor-mance[J]. Sensors and Actuators B: Chemical, 2021, 334: 129644.
|
[50] |
SHEN Y Q, ZHANG F, ZHANG Y C, et al. Ni/NiO/SiO2/C nanofibers with strong wideband microwave absorption and robust hydrophobicity[J]. Applied Surface Science,2022,588:152964. doi: 10.1016/j.apsusc.2022.152964
|
[51] |
WANG C H, ZONG L S, PAN Y X, et al. Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness[J]. Composites Part B: Engineering,2021,223:109114. doi: 10.1016/j.compositesb.2021.109114
|
[52] |
SUN Y, WANG Y J, MA H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon,2021,178:515-527. doi: 10.1016/j.carbon.2021.03.032
|
[53] |
ZHU Y X, WANG S F, ZHANG Y S, et al. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band[J]. Scientific Reports,2021,11(1):2171. doi: 10.1038/s41598-021-81848-7
|
[54] |
DU B, ZHU H, BAI Y, et al. Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities[J]. International Journal of Biological Macromolecules,2022,199:201-211. doi: 10.1016/j.ijbiomac.2021.12.154
|
[55] |
KANG S, QIAO S Y, CAO Y T, et al. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band[J]. Chemical Engineering Journal,2022,433:133619. doi: 10.1016/j.cej.2021.133619
|
[56] |
LEE H J, JEONG J H, KIM B H Microwave transmission characteristics of carbon nanofiber films with different micrometer-scale thickness[J]. Carbon, 2021, 173: 419-426.
|
[57] |
HAN C, ZHANG M, CAO W Q, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption[J]. Carbon,2021,171:953-962. doi: 10.1016/j.carbon.2020.09.067
|
[58] |
LI Z W, LIN Z J, HAN M S, et al. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications[J]. Chemical Engineering Journal,2021,420:129826. doi: 10.1016/j.cej.2021.129826
|
[59] |
BI Y, MA M, LIU Y, et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework[J]. Journal of Colloid and Interface Science,2021,600:209-218. doi: 10.1016/j.jcis.2021.04.137
|
[60] |
LIU P J, LI L, YAO Z J, et al. Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2016,27(8):7776-7787. doi: 10.1007/s10854-016-4766-0
|
[61] |
ZHANG X, HUANG Y, LIU P Enhanced electromagnetic wave absorption properties of poly(3, 4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent Interactions[J]. Nano-Micro Letters, 2016, 8(2): 131-136.
|
[62] |
KIM H J, KANG G H, KIM S H, et al. Enhancement in electromagnetic wave shielding effectiveness through the formation of carbon nanofiber hybrids on carbon-based nonwoven fabrics[J]. Nanomaterials (Basel),2021,11(11):2910. doi: 10.3390/nano11112910
|
[63] |
HUANG L, LI J, LI Y, et al. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding[J]. Nanoscale,2019,11(17):8616-8625. doi: 10.1039/C9NR02102G
|
[64] |
LEE S, PARK J, KIM M C, et al. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2021,13(21):25428-25437. doi: 10.1021/acsami.1c06230
|
[65] |
SHAHI M, MOGHIMI A, NADERIZADEH B, et al. Electrospun PVA-PANI and PVA-PANI- composite nanofibers[J]. Scientia Iranica,2011,18(6):1327-1331. doi: 10.1016/j.scient.2011.08.013
|
[66] |
ZHANG Z, WANG G, GU W, et al. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications[J]. Journal of Colloid and Interface Science,2022,605:193-203. doi: 10.1016/j.jcis.2021.07.085
|
[67] |
ZHANG Z, LIANG H, CHEN H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature[J]. Inorganic Chemistry,2020,59(3):1848-1852. doi: 10.1021/acs.inorgchem.9b03055
|
[68] |
YANG M, YANG Z J, LV C, et al. Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing[J]. Compo-sites Science and Technology,2022,221:109313. doi: 10.1016/j.compscitech.2022.109313
|
[69] |
GUO H T, ZHENG M H, MA X F, et al. Electrospun TaC/Fe3C–Fe carbon composite fabrics for high efficiency of electromagnetic interference shielding[J]. Composites Communications,2022,31:101130.
|
[70] |
WANG Y T, LI T T, SHIU B C, et al. MXene-decorated nano-fiber film based on layer-by-layer assembly strategy for high-performance electromagnetic interference shielding[J]. Applied Surface Science,2022,574:151552.
|
[71] |
荣凯, 樊威, 王琪, 等. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(9):10-16. doi: 10.13475/j.fzxb.20210203507
RONG Kai, FAN Wei, WANG Qi, et al. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles[J]. Journal of Textile Research,2021,42(9):10-16(in Chinese). doi: 10.13475/j.fzxb.20210203507
|
[72] |
YUAN W J, YANG J Z, YIN F C, et al. Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process[J]. Composites Communications,2020,19:90-98. doi: 10.1016/j.coco.2020.03.003
|
[73] |
LIU L X, GUO R, GAO J, et al. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave[J]. Composites Communications,2022,30:101094. doi: 10.1016/j.coco.2022.101094
|