Citation: | ZHANG Juntao, WANG Yazhen, LI Hui, et al. Study review on structure lithium-ion batteries of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1263-1273. doi: 10.13801/j.cnki.fhclxb.20220608.001 |
[1] |
曹金亮, 陈修强, 张春光, 等. 锂电池最新研究进展[J]. 电源技术, 2013, 37(8):1460-1463. doi: 10.3969/j.issn.1002-087X.2013.08.052
CAO Jinliang, CHEN Xiuqiang, ZHANG Chunguang, et al. Latest research progress of lithium batteries[J]. Chinese Journal of Power Sources,2013,37(8):1460-1463(in Chinese). doi: 10.3969/j.issn.1002-087X.2013.08.052
|
[2] |
张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709.
ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers [J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709(in Chinese).
|
[3] |
YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70. doi: 10.1016/j.compscitech.2017.04.031
|
[4] |
REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials,2020,13(8):1884. doi: 10.3390/ma13081884
|
[5] |
PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: Challenges, progress, and outlook[J]. ACS Applied Materials & Interfaces,2019,11(25):22029-22050.
|
[6] |
HU Y S. Batteries: Getting solid[J]. Nature Energy,2016,1(4):1-2.
|
[7] |
曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7):2025-2037. doi: 10.13801/j.cnki.fhclxb.20210114.002
CAO Liansheng, ZHAO Chao, JIN Xin, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compo-sitae Sinica,2021,38(7):2025-2037(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210114.002
|
[8] |
张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631. doi: 10.13801/j.cnki.fhclxb.20160612.002
ZHANG Hongtao, HU Hao, GU Bo, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160612.002
|
[9] |
FERREIRA A D B L, NÓVOA P R O, MARQUES A T. Multifunctional material systems: A state-of-the-art review[J]. Composite Structures,2016,151:3-35. doi: 10.1016/j.compstruct.2016.01.028
|
[10] |
DANZI F, SALGADO R M, OLIVEIRA J E, et al. Structural batteries: A review[J]. Molecules,2021,26(8):2203. doi: 10.3390/molecules26082203
|
[11] |
YANG H. A review of structural batteries implementations and applications[C]//2020 IEEE Transportation Electrification Conference & Expo (ITEC). Chicago: IEEE, 2020: 223-228.
|
[12] |
ASP L E, GREENHALGH E S. Structural power composites[J]. Composites Science and Technology,2014,101:41-61. doi: 10.1016/j.compscitech.2014.06.020
|
[13] |
ASP L E. Multifunctional composite materials for energy storage in structural load paths[J]. Plastics, Rubber and Composites,2013,42(4):144-149. doi: 10.1179/1743289811Y.0000000043
|
[14] |
ROBERTS S C, AGLIETTI G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica,2010,67(3-4):424-439. doi: 10.1016/j.actaastro.2010.03.004
|
[15] |
EKSTEDT S, WYSOCKI M, ASP L E. Structural batteries made from fibre reinforced composites[J]. Plastics, Rubber and Composites,2010,39(3-5):148-150. doi: 10.1179/174328910X12647080902259
|
[16] |
CHUNG D D L, WANG S. Carbon fiber polymer-matrix structural composite as a semiconductor and concept of optoelectronic and electronic devices made from it[J]. Smart Materials and Structures,1999,8(1):161. doi: 10.1088/0964-1726/8/1/018
|
[17] |
LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science and Technology,2001,61(6):885-888. doi: 10.1016/S0266-3538(00)00166-4
|
[18] |
WETZEL E D, O'BRIEN D J, SNYDER J F, et al. Multifunctional structural power and energy composites for US army applications[R]. Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research Directorate, 2006.
|
[19] |
王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18):84-90, 101. doi: 10.16080/j.issn1671-833x.2020.18.084
WANG Chaoyang, YANG Xiangtao, XU Xiangbo, et al. Structural energy storage carbon fiber composite design and application in drone[J]. Aeronautical Manufacturing Technology,2020,63(18):84-90, 101(in Chinese). doi: 10.16080/j.issn1671-833x.2020.18.084
|
[20] |
杨向涛, 王朝阳, 张金纳, 等. 超薄碳纤维复合材料结构电池制备及其性能评价[J]. 复合材料科学与工程, 2021(7):39-47. doi: 10.19936/j.cnki.2096-8000.20210728.007
YANG Xiangtao, WANG Chaoyang, ZHANG Jinna, et al. Preparation and performance evaluation of ultra-thin carbon fiber composite structure battery[J]. Composites Science and Engineering,2021(7):39-47(in Chinese). doi: 10.19936/j.cnki.2096-8000.20210728.007
|
[21] |
ATTAR P, GALOS J, BEST A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures,2020,237:111937. doi: 10.1016/j.compstruct.2020.111937
|
[22] |
GALOS J, FREDRIKSSON C, DAS R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials,2021,23(8):3794-3813.
|
[23] |
QU S, DAI Y, ZHANG D, et al. Carbon nanotube film based multifunctional composite materials: An overview[J]. Functional Composites and Structures,2020,2(2):022002. doi: 10.1088/2631-6331/ab9752
|
[24] |
丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1):16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006
DING Yinghui , QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica,2021,38(1):16-24(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.006
|
[25] |
POPE M A, AKSAY I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials,2015,5(16):1500124. doi: 10.1002/aenm.201500124
|
[26] |
XU J, JOHANNISSON W, JOHANSEN M, et al. Characterization of the adhesive properties between structural battery electrolytes and carbon fibers[J]. Composites Science and Technology,2020,188:107962. doi: 10.1016/j.compscitech.2019.107962
|
[27] |
ASP L E, BOUTON K, CARLSTEDT D, et al. A structural battery and its multifunctional performance[J]. Advanced Energy and Sustainability Research,2021,2(3):2000093. doi: 10.1002/aesr.202000093
|
[28] |
SAKAI M. A reaction model for Li deposition at the positive electrode of the braga-goodenough Li-S battery[J]. Jour-nal of The Electrochemical Society,2020,167(16):160540. doi: 10.1149/1945-7111/abcf53
|
[29] |
TU V, ASP L E, SHIRSHOVA N, et al. Performance of bicontinuous structural electrolytes[J]. Multifunctional Materials,2020,3(2):025001. doi: 10.1088/2399-7532/ab8d9b
|
[30] |
QIN F, PENG H X. Ferromagnetic microwires enabled multifunctional composite materials[J]. Progress in Materials Science,2013,58(2):183-259. doi: 10.1016/j.pmatsci.2012.06.001
|
[31] |
ROBERTS S C, AGLIETTI G S. Multifunctional power structures for spacecraft applications[C]//57th International Astronautical Congress. Valencia, 2006.
|
[32] |
PEREIRA T, GUO Z, NIEH S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Compo-sites Science and Technology,2008,68(7-8):1935-1941. doi: 10.1016/j.compscitech.2008.02.019
|
[33] |
HAHN H T. Energy storage structural composites: A review[J]. Journal of Composite Materials,2009,43(5):549. doi: 10.1177/0021998308097682
|
[34] |
ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790-07[S]. West Conshohocken: ASTM, 2007.
|
[35] |
ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137 M[S]. West Conshohocken: American Society for Testing and Materials, 2007.
|
[36] |
ASTM. Standard test method for shear strength of plastics by punch tool: ASTM D732-10[S]. West Conshohocken: ASTM, 2010.
|
[37] |
SHUART M J. Failure of compression-loaded multidirectional composite laminates[J]. AIAA Journal,1989,27(9):1274-1279. doi: 10.2514/3.10255
|
[38] |
THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007
|
[39] |
GALOS J, KHATIBI A A, MOURITZ A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures,2019,220:677-686. doi: 10.1016/j.compstruct.2019.04.013
|
[40] |
THOMAS J P, QIDWAI M A. The design and application of multifunctional structure-battery materials systems[J]. Journal of Composite Materials,2005,57(3):2863-2874. doi: 10.1007/s11837-005-0228-5
|
[41] |
THOMAS J P, POGUE III W R, PHAM G T, et al. Flexure and pressure-loading effects on the performance of structure-battery composite beams[J]. Journal of Composite Materials,2019,53(20):2863-2874. doi: 10.1177/0021998318810856
|
[42] |
LADPLI P, NARDARI R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources,2019,414:517-529. doi: 10.1016/j.jpowsour.2018.12.051
|
[43] |
PATTARAKUNNAN K, GALOS J, DAS R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries[J]. Composites Part A: Applied Science and Manufacturing,2020,136:105966. doi: 10.1016/j.compositesa.2020.105966
|
[44] |
GALOS J, BEST A S, MOURITZ A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design,2020,185:108228.
|
[45] |
CARLSON T. Multifunctional composite materials: Design, manufacture and experimental characterisation[D]. Luleå: Luleå Tekniska Universitet, 2013.
|
[46] |
JOHANNISSON W, ZENKERT D, LINDBERGH G. Model of a structural battery and its potential for system level mass savings[J]. Multifunctional Materials,2019,2(3):035002. doi: 10.1088/2399-7532/ab3bdd
|
[47] |
MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials,2020,24:676-681. doi: 10.1016/j.ensm.2019.08.003
|
[48] |
XU J, VARNA J. Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading[J]. Composites Science and Technology,2020,186:107891. doi: 10.1016/j.compscitech.2019.107891
|
[49] |
李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2):513-527. doi: 10.13801/j.cnki.fhclxb.20210708.002
LI Zhongming , LI Bin , FENG Dong, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica,2022,39(2):513-527(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210708.002
|
[50] |
KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):A1455. doi: 10.1149/2.053112jes
|
[51] |
FREDI G, JESCHKE S, BOULAOUED A, et al. Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes[J]. Multifunctional Materials,2018,1(1):015003. doi: 10.1088/2399-7532/aab707
|
[52] |
HAGBERG J, MAPLES H A, ALVIM K S P, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology,2018,162:235-243. doi: 10.1016/j.compscitech.2018.04.041
|
[53] |
LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026
|
[54] |
WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3
|
[55] |
ZHAO Y, ZHAO D, ZHANG T, et al. Preparation and multifunctional performance of carbon fiber-reinforced plastic composites for laminated structural batteries[J]. Polymer Composites,2020,41(8):3023-3033. doi: 10.1002/pc.25594
|
[56] |
TORQUATO S, HYUN S, DONEV A. Optimal design of manu-facturable three-dimensional composites with multifunctional characteristics[J]. Journal of Applied Physics,2003,94(9):5748-5755. doi: 10.1063/1.1611631
|
[57] |
GIENGER E B, NGUYEN P A T, CHIN W, et al. Microstructure and multifunctional properties of liquid+polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths[J]. Journal of Applied Polymer Science, 2015, 132(42): 20-29.
|
[58] |
RHAZAOUI K, CAI Q, ADJIMAN C S, et al. Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I — Model development[J]. Chemical Engi-neering Science,2013,99:161-170. doi: 10.1016/j.ces.2013.05.030
|
[59] |
BERINGER I R, WALTER M, SNYDER J F, et al. Multifunctional structural polymer electrolytes via interpenetrating truss structures[J]. Multifunctional Materials,2018,1(1):015005. doi: 10.1088/2399-7532/aaee16
|
[60] |
曹邵文, 周国庆, 蔡琦琳, 等. 太阳能电池综述: 材料、政策驱动机制及应用前景[J]. 复合材料学报, 2022, 39(5): 1847-1858.
CAO Shaowen, ZHOU Guoqing, CAI Qilin, et al. A review of solar cells: Materials, policy-driven mechanisms and application prospects[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1847-1858(in Chinese).
|
[61] |
陶积柏, 朱大雷, 董丰路, 等. 航天器用支架复合材料轻量化研究[J]. 复合材料学报, 2016, 33(5):1020-1025. doi: 10.13801/j.cnki.fhclxb.20151225.004
TAO Jibo, ZHU Dalei, DONG Fenglu, et al. Research on lightweight composites of stent for spacecrafts[J]. Acta Materiae Compositae Sinica,2016,33(5):1020-1025(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151225.004
|
[62] |
ACERO M C, ESCALERA F, ESSA Y. Morphing technology for advanced future commercial aircrafts-ScienceDirect[M]//Morphing Wing Technologies. Oxford: Butterworth-Heinemann, 2018: 585-618.
|
[63] |
BRUNET M, AUBRY S, LAFAGE R. The clean sky programme: Environmental benefits at aircraft level[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, 2015: 2390.
|
[64] |
AMEDURI S, CONCILIO A, DIMINO I, et al. AIRGREEN2-Clean Sky 2 Programme: Adaptive wing technology maturation, challenges and perspectives[C]//Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers. Philadelphia, 2018.
|
[65] |
LERRO A, BATTIPEDE M, GILI P, et al. The clean sky 2 midas project-an innovative modular, digital and integrated air data system for fly-by-wire applications[C]//2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Rome: IEEE, 2019: 714-719.
|
[66] |
LAFAGE R, AUBRY S. The Clean Sky technology evaluator: Review and results of the environmental impact assessment at mission level[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington, 2016: 3745.
|
[67] |
BLACHA M, FINK A, EGLIN P, et al. Clean Sky 2: Exploring new rotorcraft high speed configurations[C]//43rd European Rotorcraft Forum. Milan, 2017.
|
[68] |
GREENHALGH E S, SHAFFER M S P, KUCERNAk A R, et al. Future challenges and industrial adoption strategies for structural supercapacitors[C]//Proceedings of the ICCM22. Melbourne, 2019: 11-16.
|
[69] |
NGUYEN S N, MILLEREUX A, POUYAT A, et al. Structural power performance requirements for future aircraft integration[C]//Proceedings of the 22nd International Conference on Composite Materials. Melbourne, 2019: 3902-3913.
|
[70] |
GREENHALGH E. Structural power composites for hybrid vehicles (STORAGE)[C]//ECCM15-15th European Conference on Composite Materials. Venice, 2012: 24-28.
|
[71] |
CARLSTEDT D, ASP L E. Performance analysis framework for structural battery composites in electric vehicles[J]. Composites Part B: Engineering,2020,186:107822. doi: 10.1016/j.compositesb.2020.107822
|