Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Juntao, WANG Yazhen, LI Hui, et al. Study review on structure lithium-ion batteries of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1263-1273. doi: 10.13801/j.cnki.fhclxb.20220608.001
Citation: ZHANG Juntao, WANG Yazhen, LI Hui, et al. Study review on structure lithium-ion batteries of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1263-1273. doi: 10.13801/j.cnki.fhclxb.20220608.001

Study review on structure lithium-ion batteries of carbon fiber reinforced composites

doi: 10.13801/j.cnki.fhclxb.20220608.001
Funds:  National Natural Science Foundation of China-Henan Province Joint Fund Key Project (U1604253); Supported by the National Key Research and Development Program of China (2016 YFB0101602)
  • Received Date: 2022-04-19
  • Accepted Date: 2022-05-31
  • Rev Recd Date: 2022-05-22
  • Available Online: 2022-06-09
  • Publish Date: 2023-03-15
  • Carbon fiber structure lithium-ion batteries (CFSLB) are combination of structural parts and energy storage system. CFSLB have excellent energy storage properties while maintaining the mechanical properties of carbon fiber reinforced polymer. Structural batteries can improve the energy efficiency and structural efficiency of the power battery pack while reducing weight and simplifying structure. Structure batteries, as a new energy storage device, have attracted great attention of home and aboard scholars in the requirement of low-carbon emission. This article reviews the research status and fundamental problems included working principle, preparing process and storing energy properties of embedded structure batteries and multifunctional composite structure batteries. The concept and design prototype on All-carbon solidity structure batteries are suggested. The representative applications of structure batteries are introduced. The future applications in aerospace, transportation and other industrial fields are discussed.


  • loading
  • [1]
    曹金亮, 陈修强, 张春光, 等. 锂电池最新研究进展[J]. 电源技术, 2013, 37(8):1460-1463. doi: 10.3969/j.issn.1002-087X.2013.08.052

    CAO Jinliang, CHEN Xiuqiang, ZHANG Chunguang, et al. Latest research progress of lithium batteries[J]. Chinese Journal of Power Sources,2013,37(8):1460-1463(in Chinese). doi: 10.3969/j.issn.1002-087X.2013.08.052
    张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709.

    ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers [J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709(in Chinese).
    YU Y, ZHANG B, FENG M, et al. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites[J]. Composites Science and Technology,2017,147:62-70. doi: 10.1016/j.compscitech.2017.04.031
    REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials,2020,13(8):1884. doi: 10.3390/ma13081884
    PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: Challenges, progress, and outlook[J]. ACS Applied Materials & Interfaces,2019,11(25):22029-22050.
    HU Y S. Batteries: Getting solid[J]. Nature Energy,2016,1(4):1-2.
    曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7):2025-2037. doi: 10.13801/j.cnki.fhclxb.20210114.002

    CAO Liansheng, ZHAO Chao, JIN Xin, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compo-sitae Sinica,2021,38(7):2025-2037(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210114.002
    张红涛, 胡昊, 顾波, 等. 聚偏氟乙烯-沸石复合锂电隔膜的制备及性能[J]. 复合材料学报, 2017, 34(3):625-631. doi: 10.13801/j.cnki.fhclxb.20160612.002

    ZHANG Hongtao, HU Hao, GU Bo, et al. Preparation and performances of PVDF-zeolite composite separator for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2017,34(3):625-631(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160612.002
    FERREIRA A D B L, NÓVOA P R O, MARQUES A T. Multifunctional material systems: A state-of-the-art review[J]. Composite Structures,2016,151:3-35. doi: 10.1016/j.compstruct.2016.01.028
    DANZI F, SALGADO R M, OLIVEIRA J E, et al. Structural batteries: A review[J]. Molecules,2021,26(8):2203. doi: 10.3390/molecules26082203
    YANG H. A review of structural batteries implementations and applications[C]//2020 IEEE Transportation Electrification Conference & Expo (ITEC). Chicago: IEEE, 2020: 223-228.
    ASP L E, GREENHALGH E S. Structural power composites[J]. Composites Science and Technology,2014,101:41-61. doi: 10.1016/j.compscitech.2014.06.020
    ASP L E. Multifunctional composite materials for energy storage in structural load paths[J]. Plastics, Rubber and Composites,2013,42(4):144-149. doi: 10.1179/1743289811Y.0000000043
    ROBERTS S C, AGLIETTI G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica,2010,67(3-4):424-439. doi: 10.1016/j.actaastro.2010.03.004
    EKSTEDT S, WYSOCKI M, ASP L E. Structural batteries made from fibre reinforced composites[J]. Plastics, Rubber and Composites,2010,39(3-5):148-150. doi: 10.1179/174328910X12647080902259
    CHUNG D D L, WANG S. Carbon fiber polymer-matrix structural composite as a semiconductor and concept of optoelectronic and electronic devices made from it[J]. Smart Materials and Structures,1999,8(1):161. doi: 10.1088/0964-1726/8/1/018
    LUO X, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science and Technology,2001,61(6):885-888. doi: 10.1016/S0266-3538(00)00166-4
    WETZEL E D, O'BRIEN D J, SNYDER J F, et al. Multifunctional structural power and energy composites for US army applications[R]. Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research Directorate, 2006.
    王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18):84-90, 101. doi: 10.16080/j.issn1671-833x.2020.18.084

    WANG Chaoyang, YANG Xiangtao, XU Xiangbo, et al. Structural energy storage carbon fiber composite design and application in drone[J]. Aeronautical Manufacturing Technology,2020,63(18):84-90, 101(in Chinese). doi: 10.16080/j.issn1671-833x.2020.18.084
    杨向涛, 王朝阳, 张金纳, 等. 超薄碳纤维复合材料结构电池制备及其性能评价[J]. 复合材料科学与工程, 2021(7):39-47. doi: 10.19936/j.cnki.2096-8000.20210728.007

    YANG Xiangtao, WANG Chaoyang, ZHANG Jinna, et al. Preparation and performance evaluation of ultra-thin carbon fiber composite structure battery[J]. Composites Science and Engineering,2021(7):39-47(in Chinese). doi: 10.19936/j.cnki.2096-8000.20210728.007
    ATTAR P, GALOS J, BEST A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures,2020,237:111937. doi: 10.1016/j.compstruct.2020.111937
    GALOS J, FREDRIKSSON C, DAS R. Multifunctional sandwich panel design with lithium-ion polymer batteries[J]. Journal of Sandwich Structures & Materials,2021,23(8):3794-3813.
    QU S, DAI Y, ZHANG D, et al. Carbon nanotube film based multifunctional composite materials: An overview[J]. Functional Composites and Structures,2020,2(2):022002. doi: 10.1088/2631-6331/ab9752
    丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1):16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006

    DING Yinghui , QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica,2021,38(1):16-24(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.006
    POPE M A, AKSAY I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials,2015,5(16):1500124. doi: 10.1002/aenm.201500124
    XU J, JOHANNISSON W, JOHANSEN M, et al. Characterization of the adhesive properties between structural battery electrolytes and carbon fibers[J]. Composites Science and Technology,2020,188:107962. doi: 10.1016/j.compscitech.2019.107962
    ASP L E, BOUTON K, CARLSTEDT D, et al. A structural battery and its multifunctional performance[J]. Advanced Energy and Sustainability Research,2021,2(3):2000093. doi: 10.1002/aesr.202000093
    SAKAI M. A reaction model for Li deposition at the positive electrode of the braga-goodenough Li-S battery[J]. Jour-nal of The Electrochemical Society,2020,167(16):160540. doi: 10.1149/1945-7111/abcf53
    TU V, ASP L E, SHIRSHOVA N, et al. Performance of bicontinuous structural electrolytes[J]. Multifunctional Materials,2020,3(2):025001. doi: 10.1088/2399-7532/ab8d9b
    QIN F, PENG H X. Ferromagnetic microwires enabled multifunctional composite materials[J]. Progress in Materials Science,2013,58(2):183-259. doi: 10.1016/j.pmatsci.2012.06.001
    ROBERTS S C, AGLIETTI G S. Multifunctional power structures for spacecraft applications[C]//57th International Astronautical Congress. Valencia, 2006.
    PEREIRA T, GUO Z, NIEH S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Compo-sites Science and Technology,2008,68(7-8):1935-1941. doi: 10.1016/j.compscitech.2008.02.019
    HAHN H T. Energy storage structural composites: A review[J]. Journal of Composite Materials,2009,43(5):549. doi: 10.1177/0021998308097682
    ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790-07[S]. West Conshohocken: ASTM, 2007.
    ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137 M[S]. West Conshohocken: American Society for Testing and Materials, 2007.
    ASTM. Standard test method for shear strength of plastics by punch tool: ASTM D732-10[S]. West Conshohocken: ASTM, 2010.
    SHUART M J. Failure of compression-loaded multidirectional composite laminates[J]. AIAA Journal,1989,27(9):1274-1279. doi: 10.2514/3.10255
    THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia,2004,52(8):2155-2164. doi: 10.1016/j.actamat.2004.01.007
    GALOS J, KHATIBI A A, MOURITZ A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures,2019,220:677-686. doi: 10.1016/j.compstruct.2019.04.013
    THOMAS J P, QIDWAI M A. The design and application of multifunctional structure-battery materials systems[J]. Journal of Composite Materials,2005,57(3):2863-2874. doi: 10.1007/s11837-005-0228-5
    THOMAS J P, POGUE III W R, PHAM G T, et al. Flexure and pressure-loading effects on the performance of structure-battery composite beams[J]. Journal of Composite Materials,2019,53(20):2863-2874. doi: 10.1177/0021998318810856
    LADPLI P, NARDARI R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources,2019,414:517-529. doi: 10.1016/j.jpowsour.2018.12.051
    PATTARAKUNNAN K, GALOS J, DAS R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries[J]. Composites Part A: Applied Science and Manufacturing,2020,136:105966. doi: 10.1016/j.compositesa.2020.105966
    GALOS J, BEST A S, MOURITZ A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design,2020,185:108228.
    CARLSON T. Multifunctional composite materials: Design, manufacture and experimental characterisation[D]. Luleå: Luleå Tekniska Universitet, 2013.
    JOHANNISSON W, ZENKERT D, LINDBERGH G. Model of a structural battery and its potential for system level mass savings[J]. Multifunctional Materials,2019,2(3):035002. doi: 10.1088/2399-7532/ab3bdd
    MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Materials,2020,24:676-681. doi: 10.1016/j.ensm.2019.08.003
    XU J, VARNA J. Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading[J]. Composites Science and Technology,2020,186:107891. doi: 10.1016/j.compscitech.2019.107891
    李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2):513-527. doi: 10.13801/j.cnki.fhclxb.20210708.002

    LI Zhongming , LI Bin , FENG Dong, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica,2022,39(2):513-527(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210708.002
    KJELL M H, JACQUES E, ZENKERT D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of the Electrochemical Society,2011,158(12):A1455. doi: 10.1149/2.053112jes
    FREDI G, JESCHKE S, BOULAOUED A, et al. Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes[J]. Multifunctional Materials,2018,1(1):015003. doi: 10.1088/2399-7532/aab707
    HAGBERG J, MAPLES H A, ALVIM K S P, et al. Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries[J]. Composites Science and Technology,2018,162:235-243. doi: 10.1016/j.compscitech.2018.04.041
    LEIJONMARCK S, CARLSON T, LINDBERGH G, et al. Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries[J]. Composites Science and Technology,2013,89:149-157. doi: 10.1016/j.compscitech.2013.09.026
    WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3
    ZHAO Y, ZHAO D, ZHANG T, et al. Preparation and multifunctional performance of carbon fiber-reinforced plastic composites for laminated structural batteries[J]. Polymer Composites,2020,41(8):3023-3033. doi: 10.1002/pc.25594
    TORQUATO S, HYUN S, DONEV A. Optimal design of manu-facturable three-dimensional composites with multifunctional characteristics[J]. Journal of Applied Physics,2003,94(9):5748-5755. doi: 10.1063/1.1611631
    GIENGER E B, NGUYEN P A T, CHIN W, et al. Microstructure and multifunctional properties of liquid+polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths[J]. Journal of Applied Polymer Science, 2015, 132(42): 20-29.
    RHAZAOUI K, CAI Q, ADJIMAN C S, et al. Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I — Model development[J]. Chemical Engi-neering Science,2013,99:161-170. doi: 10.1016/j.ces.2013.05.030
    BERINGER I R, WALTER M, SNYDER J F, et al. Multifunctional structural polymer electrolytes via interpenetrating truss structures[J]. Multifunctional Materials,2018,1(1):015005. doi: 10.1088/2399-7532/aaee16
    曹邵文, 周国庆, 蔡琦琳, 等. 太阳能电池综述: 材料、政策驱动机制及应用前景[J]. 复合材料学报, 2022, 39(5): 1847-1858.

    CAO Shaowen, ZHOU Guoqing, CAI Qilin, et al. A review of solar cells: Materials, policy-driven mechanisms and application prospects[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1847-1858(in Chinese).
    陶积柏, 朱大雷, 董丰路, 等. 航天器用支架复合材料轻量化研究[J]. 复合材料学报, 2016, 33(5):1020-1025. doi: 10.13801/j.cnki.fhclxb.20151225.004

    TAO Jibo, ZHU Dalei, DONG Fenglu, et al. Research on lightweight composites of stent for spacecrafts[J]. Acta Materiae Compositae Sinica,2016,33(5):1020-1025(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151225.004
    ACERO M C, ESCALERA F, ESSA Y. Morphing technology for advanced future commercial aircrafts-ScienceDirect[M]//Morphing Wing Technologies. Oxford: Butterworth-Heinemann, 2018: 585-618.
    BRUNET M, AUBRY S, LAFAGE R. The clean sky programme: Environmental benefits at aircraft level[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, 2015: 2390.
    AMEDURI S, CONCILIO A, DIMINO I, et al. AIRGREEN2-Clean Sky 2 Programme: Adaptive wing technology maturation, challenges and perspectives[C]//Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers. Philadelphia, 2018.
    LERRO A, BATTIPEDE M, GILI P, et al. The clean sky 2 midas project-an innovative modular, digital and integrated air data system for fly-by-wire applications[C]//2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Rome: IEEE, 2019: 714-719.
    LAFAGE R, AUBRY S. The Clean Sky technology evaluator: Review and results of the environmental impact assessment at mission level[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington, 2016: 3745.
    BLACHA M, FINK A, EGLIN P, et al. Clean Sky 2: Exploring new rotorcraft high speed configurations[C]//43rd European Rotorcraft Forum. Milan, 2017.
    GREENHALGH E S, SHAFFER M S P, KUCERNAk A R, et al. Future challenges and industrial adoption strategies for structural supercapacitors[C]//Proceedings of the ICCM22. Melbourne, 2019: 11-16.
    NGUYEN S N, MILLEREUX A, POUYAT A, et al. Structural power performance requirements for future aircraft integration[C]//Proceedings of the 22nd International Conference on Composite Materials. Melbourne, 2019: 3902-3913.
    GREENHALGH E. Structural power composites for hybrid vehicles (STORAGE)[C]//ECCM15-15th European Conference on Composite Materials. Venice, 2012: 24-28.
    CARLSTEDT D, ASP L E. Performance analysis framework for structural battery composites in electric vehicles[J]. Composites Part B: Engineering,2020,186:107822. doi: 10.1016/j.compositesb.2020.107822
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2487) PDF downloads(328) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint