Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
XUE Yousong, XUE Lingming, SUN Baozhong, et al. Piezoresistive effect of carbon fiber 3D angle-interlock woven composites under bending[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1468-1476. doi: 10.13801/j.cnki.fhclxb.20220516.006
Citation: XUE Yousong, XUE Lingming, SUN Baozhong, et al. Piezoresistive effect of carbon fiber 3D angle-interlock woven composites under bending[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1468-1476. doi: 10.13801/j.cnki.fhclxb.20220516.006

Piezoresistive effect of carbon fiber 3D angle-interlock woven composites under bending

doi: 10.13801/j.cnki.fhclxb.20220516.006
  • Received Date: 2022-03-18
  • Accepted Date: 2022-05-03
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-05-17
  • Publish Date: 2023-03-15
  • Electrical resistance method has great prospects in structural health monitoring (SHM) of carbon fiber reinforced composites. The piezoresistive effect of carbon fiber 3D angle-interlock woven composites in the warp direction and weft direction under bending was investigated to find the relationship between the resistance variation and structure damage. The experimental results show that the resistance variation of the warp and weft samples under bending corresponded with the damage of the main load-bearing yarns. The resistance variation of the composite reflected the change in the load-bearing ability of the composite under the quasi-static three-point bending test. The electrical resistance did not change before the maxim load, while that increased after the main load-bearing yarns occurred breakage. The resistance variation of the composite reflected the degradation in the load-bearing ability of the composite under the bending fatigue test. In the early stage of the bending fatigue test, the negative piezoresistive effect of the composites was observed. The electrical resistance increased slowly due to the accumulation of the irreversible damage including matrix cracks and interface debonding, while that increased significantly after the main load-bearing yarns were damaged. The electrical resistance increased dramatically when the samples occurred fatigue failure.


  • loading
  • [1]
    姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018, 35(10):2706-2714.

    YAO Siyuan, CHEN Xiuhua. Fatigue behaviors of 3D woven composites under tension-compression cyclic loading[J]. Acta Materiae Compositae Sinica,2018,35(10):2706-2714(in Chinese).
    LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics,2021,34(8):143-163. doi: 10.1016/j.cja.2020.09.027
    WIELHORSKI Y, MENDOZA A, RUBINO M, et al. Numerical modeling of 3D woven composite reinforcements: A review[J]. Composites Part A: Applied Science and Manufacturing,2022,154:106729. doi: 10.1016/j.compositesa.2021.106729
    陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.

    CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3 D woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese).
    ZHENG T, GUO L, HUANG J, et al. A novel mesoscopic progressive damage model for 3D angle-interlock woven composites[J]. Composites Science and Technology,2020,185:107894. doi: 10.1016/j.compscitech.2019.107894
    ROCHA H, SEMPRIMOSCHNIG C, NUNES J P. Sensors for process and structural health monitoring of aerospace composites: A review[J]. Engineering Structures,2021,237:112231. doi: 10.1016/j.engstruct.2021.112231
    RAMAKRISHNAN M, RAJAN G, SEMENOVA Y, et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors (Basel),2016,16(1):99. doi: 10.3390/s16010099
    ZHANG Z, HE M, LIU A, et al. Vibration-based assessment of delaminations in FRP composite plates[J]. Composites Part B: Engineering,2018,144:254-266. doi: 10.1016/j.compositesb.2018.03.003
    SZEBÉNYI G, BLÖSSL Y, HEGEDÜS G, et al. Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors[J]. Composites Science and Technology,2020,199:108317. doi: 10.1016/j.compscitech.2020.108317
    KAPPEL E, PRUSSAK R, WIEDEMANN J. On a simultaneous use of fiber-Bragg-gratings and strain-gages to determine the stress-free temperature Tsf during GLARE manufacturing[J]. Composite Structures,2019,227:111279. doi: 10.1016/j.compstruct.2019.111279
    郑华升, 朱四荣, 李卓球. 碳纤维增强塑料(CFRP)力阻效应的研究评述[J]. 材料科学与工程学报, 2017, 35(6):1009-1013, 1021.

    ZHENG Huasheng, ZHU Sirong, LI Zhuoqiu. Research state of piezoresistivity of CFRP[J]. Journal of Materials Science and Engineering,2017,35(6):1009-1013, 1021(in Chinese).
    FORINTOS N, SARKADI T, CZIGANY T. Electric resistance measurement–based structural health monitoring with multifunctional carbon fibers: Predicting, sensing, and measuring overload[J]. Composites Communications,2021,28:100913. doi: 10.1016/j.coco.2021.100913
    THOMAS A J, KIM J J, TALLMAN T N, et al. Damage detection in self-sensing composite tubes via electrical impedance tomography[J]. Composites Part B: Engineering,2019,177:107276. doi: 10.1016/j.compositesb.2019.107276
    SANNAMANI M, GAO J, CHEN W W, et al. Damage detection in non-planar carbon fiber-reinforced polymer laminates via electrical impedance tomography with surface-mounted electrodes and directional sensitivity matrices[J]. Composites Science and Technology,2022,224:109429. doi: 10.1016/j.compscitech.2022.109429
    OGI K, TAKAO Y. Characterization of piezoresistance behavior in a CFRP unidirectional laminate[J]. Composites Science and Technology,2005,65(2):231-239. doi: 10.1016/j.compscitech.2004.07.005
    TODOROKI A, OMAGARI K, SHIMAMURA Y, et al. Matrix crack detection of CFRP using electrical resistance change with integrated surface probes[J]. Composites Science and Technology,2006,66(11):1539-1545.
    TODOROKI A, TANAKA M, SHIMAMURA Y. Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method[J]. Composites Science and Technology,2002,62(5):619-628. doi: 10.1016/S0266-3538(02)00019-2
    SEVKAT E, LI J, LIAW B, et al. A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading[J]. Composites Science and Technology,2008,68(10):2214-2219.
    黄俊捷, 刘荣桂, 许兆辉, 等. 基于碳纤维材料力阻效应的传感器工程应用初探[J]. 玻璃钢/复合材料, 2017(9):46-51.

    HUANG Junjie, LIU Ronggui, XU Zhaohui, et al. Study on the engineering application of the sensor based on the piezo-resistance effect of CFRP[J]. Composites Science and Engineering,2017(9):46-51(in Chinese).
    CHUNG D D L. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing[J]. Journal of Materials Science,2020,55(32):15367-15396. doi: 10.1007/s10853-020-05099-z
    ABRY J C, BOCHARD S, CHATEAUMINOIS A, et al. In situ detection of damage in CFRP laminates by electrical resistance measurements[J]. Composites Science and Technology,1999,59(6):925-935. doi: 10.1016/S0266-3538(98)00132-8
    WEBER I, SCHWARTZ P. Monitoring bending fatigue in carbon-fibre/epoxy composite strands: A comparison between mechanical and resistance techniques[J]. Composites Science and Technology,2001,61(6):849-853. doi: 10.1016/S0266-3538(01)00028-8
    CHO J W, CHOI J S, YOON Y S. Electromechanical behavior of hybrid carbon/glass fiber composites with tension and bending[J]. Journal of Applied Polymer Science,2002,83(11):2447-2453. doi: 10.1002/app.10226
    XUE L Z, LI K Z, JIA Y, et al. Flexural fatigue behavior of 2D cross-ply carbon/carbon composites at room tempera-ture[J]. Materials Science and Engineering: A,2015,634:209-214. doi: 10.1016/j.msea.2015.03.029
    GADOMSKI J, PYRZANOWSKI P. Experimental investigation of fatigue destruction of CFRP using the electrical re-sistance change method[J]. Measurement,2016,87:236-245. doi: 10.1016/j.measurement.2016.03.036
    ROH H D, LEE S Y, JO E, et al. Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement[J]. Composite Structures,2019,216:142-150. doi: 10.1016/j.compstruct.2019.02.100
    ZHANG R, ZHANG L, FANG H, et al. Electromechanical-mode coupling model and failure prediction of CFRP under three-point bending[J]. Electronics, 2021, 10(16): 2007.
    SALEH M N, YUDHANTO A, LUBINEAU G, et al. The effect of z-binding yarns on the electrical properties of 3D woven composites[J]. Composite Structures,2017,182:606-616. doi: 10.1016/j.compstruct.2017.09.081
    CHENG X, ZHOU H, WU Z, et al. Detection of bending direction and amplitude by electrical resistance measurement of axial carbon fibers in braided composite tube[J]. Textile Research Journal,2018,89(12):2500-2508.
    CHENG X, ZHOU H, WU Z, et al. An investigation into self-sensing property of hat-shaped 3D orthogonal woven composite under bending test[J]. Journal of Reinforced Plastics and Composites,2018,38:149-166.
    HAN C, HUANG S, SUN B, et al. Electrical resistance changes of 3D carbon fiber/epoxy woven composites under short beam shear loading along different orientations[J]. Composite Structures,2021,276:114549. doi: 10.1016/j.compstruct.2021.114549
    国家市场监督管理总局. 聚合物基复合材料疲劳性能测试方法 第5部分: 弯曲疲劳: GB/T 35465.5—2020[S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation. Test methods for fatigue properties of polymer matrix composites materials—Part 5: Flexural fatigue: GB/T 35465.5—2020[S]. Beijing: China Press Standards, 2020(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (802) PDF downloads(54) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint