Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Wenxiao, ZUO Xingwei, QU Lijun, ZHANG Xueji, MIAO Jinlei. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002
Citation: ZHANG Wenxiao, ZUO Xingwei, QU Lijun, ZHANG Xueji, MIAO Jinlei. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002

Research progress of flexible electronic devices based on conductive fibers

doi: 10.13801/j.cnki.fhclxb.20220511.002
Funds:  Natural Science Foundation of Shandong Province of China (ZR2020 QE081); Shandong Province Key Research and Development Plan (Major Scientifc and Technological Innovation Projects) (2019 JZZY010340; 2019 JZZY010335; 2019 GGX102022); China Postdoctoral Science Foundation (2020 M671994)
  • Received Date: 2022-03-16
  • Accepted Date: 2022-05-03
  • Rev Recd Date: 2022-04-26
  • Available Online: 2022-05-12
  • Publish Date: 2023-02-01
  • Flexible electronics have excellent flexibility, enabling seamless integration with clothing, and have great potential in various practical wearable applications. One-dimensional fibrous electronic devices have become a research hotspot in the field of smart wearables due to their excellent flexibility, weavability and comfort. First, the research progress of one-dimensional stretchable electrodes for fiber-like flexible electronic devices is reviewed, and then introduced the high-performance one-dimensional fibrous flexible electronics representative during the preparation of conductive material, manufacturing technology, as well as the further application of the one-dimensional flexible fiber become various main preparation methods for all kinds of electronic devices. Finally, we think critically about the opportunities and challenges of one-dimensional wikis smart wearable electronics.


  • loading
  • [1]
    LOU Z, WANG L, JIANG K, et al. Reviews of wearable healthcare systems: Materials, devices and system integration[J]. Materials Science and Engineering: Reports,2020,140:100523. doi: 10.1016/j.mser.2019.100523
    SOURI H, BHATTACHARYYA D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces,2018,10(24):20845-20853.
    ZHAO J, FU Y, XIAO Y, et al. A naturally integrated smart textile for wearable electronics applications[J]. Advanced Materials Technologies,2019,5(1):1900781.
    SENEVIRATNE S, HU Y, NGUYEN T, et al. A survey of wearable devices and challenges[J]. IEEE Communications Surveys & Tutorials,2017,19(4):2573-2620.
    TEYMOURIAN H, PARRILLA M, SEMPIONATTO J R, et al. Wearable electrochemical sensors for the monitoring and screening of drugs[J]. ACS Sensors,2020,5(9):2679-2700. doi: 10.1021/acssensors.0c01318
    RAHMAN M T, RANA S M S, SALAUDDIN M, et al. Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electro-nics[J]. Advanced Energy Materials,2020,10(12):1903663. doi: 10.1002/aenm.201903663
    LEE J, LLERENA Z B, WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications[J]. Advanced Materials,2020,32(5):e1902532. doi: 10.1002/adma.201902532
    LIU X, MIAO J, FAN Q, et al. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56607-56619.
    DUAN Z, XU L J. Dual band wristband antenna with metal frame loaded for biomedical applications[J]. Microwave and Optical Technology Letters,2017,59(9):2155-2159. doi: 10.1002/mop.30690
    ABED H, BELLEMARE-ROUSSEAU S, BELANGER-HUOT B, et al. A wire-free and fiber-based smart T-shirt for real-time breathing rate monitoring[J]. IEEE Sensors Journal,2022,22(5):4463-4471. doi: 10.1109/JSEN.2021.3139032
    YAO S, SWETHA P, ZHU Y. Nanomaterial-enabled wearable sensors for healthcare[J]. Advanced Healthcare Materials,2018,7(1):1700889. doi: 10.1002/adhm.201700889
    LI X, HU H, HUA T, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research,2018,11(11):5799-5811. doi: 10.1007/s12274-018-2043-7
    PACCHIEROTTI C, SINCLAIR S, SOLAZZI M, et al. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives[J]. IEEE Transactions on Haptics, 2017, 10(4): 580-600.
    SHI Q, DONG B, HE T, et al. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things[J]. InfoMat,2020,2(6):1131-1162. doi: 10.1002/inf2.12122
    刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1):67-83.

    LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fibers for wearable smart textiles[J]. Journal of Composite Materials,2021,38(1):67-83(in Chinese).
    JAYATHILAKA W, QI K, QIN Y, et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors[J]. Advanced Materials,2019,31(7):e1805921. doi: 10.1002/adma.201805921
    WU Y, LI X, ZHAO H, et al. Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges[J]. Chemical Engineering Journal,2021,418:129296. doi: 10.1016/j.cej.2021.129296
    WANG C, XIA K, WANG H, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials,2019,31(9):e1801072. doi: 10.1002/adma.201801072
    LI G, HONG G, DONG D, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials,2018,30(30):e1801754. doi: 10.1002/adma.201801754
    GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultra-stretchable conductor and strain sensor[J]. ACS Nano,2020 , 14 (3):3442-3450.
    ZHONG J W, ZHANG Y, ZHONG Q, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano,2014,8(6):6273-6280.
    ABDULLAH H, AHMED K, ALAM M S, et al. High sensiti-vity refractive index sensor based on triple layer MgF2-gold-MgF2 coated nano metal films photonic crystal fiber[J]. Optik,2021,241:166950. doi: 10.1016/j.ijleo.2021.166950
    LIAO J, YANG M, ZHANG W, et al. Spider silk-inspired universal strategy: Directional patching of one-dimensional nanomaterial-based flexible transparent electrodes for smart flexible electronics[J]. Chemical Engineering Jour-nal,2020,389:123663. doi: 10.1016/j.cej.2019.123663
    ZHANG M, YAO S, RAO W, et al. Transformable soft liquid metal micro/nanomaterials[J]. Materials Science and Engineering R: Reports,2019,138:1-35. doi: 10.1016/j.mser.2019.03.001
    GUO R, SUN X, YAO S, et al. Semi-liquid-metal-(Ni-EGaIn)-based LTRA conformable electronic tattoo[J]. Advanced Materials Technologies,2019,4(8):1900183. doi: 10.1002/admt.201900183
    KIM J, KUMAR R, BANDODKAR A J, et al. Advanced materials for printed wearable electrochemical devices: A review[J]. Advanced Electronic Materials,2016,3(1):1600260.
    CHENG Y, WANG R, SUN J, et al. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires[J]. ACS Nano,2015,9(4):3887-3895. doi: 10.1021/nn5070937
    LEE J, SHIN S, LEE S, et al. Correction to highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics[J]. ACS Nano,2018,12(9):9634. doi: 10.1021/acsnano.8b05295
    ZHOU J, TIAN G, JIN G, et al. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor[J]. Advanced Functional Materials,2019,30(5):1907316.
    YI F, REN H, SHAN J, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews, 2018, 47(9): 3152-3188.
    ETMAN A S, HALIM J, ROSEN J. Mixed MXenes: Mo1.33CTz and Ti3C2Tz freestanding composite films for energy storage[J]. Nano Energy,2021,88:106271.
    SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel[J]. ACS Nano,2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255
    ZHANG X, ZHANG Z, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry,2018,27(1):73-85. doi: 10.1016/j.jechem.2017.08.004
    ZHANG J, SEYEDIN S, GU Z, et al. MXene: A potential candidate for yarn supercapacitors[J]. Nanoscale,2017,9(47):18604-18608. doi: 10.1039/C7NR06619H
    WANG L, TIAN M, ZHANG Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer[J]. Journal of Materials Science,2020,55(14):6187-6194. doi: 10.1007/s10853-020-04425-9
    WANG Z, HUANG Y, SUN J, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces,2016,8(37):24837-24843.
    谢晓旭, 王彦, 诸静, 等. 基于夹心结构的碳纳米管/石墨烯复合柔性导电纤维的制备及其应用[J]. 现代化工, 2020, 40(10):188-192.

    XIE Xiaoxu, WANG Yan, ZHU Jing, et al. Fabrication and application of carbon nanotubes/graphene composite flexible conductive fibers based on sandwich structure[J]. Modern Chemical Industry,2020,40(10):188-192(in Chinese).
    ZHANG B, LEI J, QI D, et al. Stretchable conductive fibers based on a cracking control strategy for wearable electro-nics[J]. Advanced Functional Materials,2018,28(29):1801683. doi: 10.1002/adfm.201801683
    WOO J, LEE H, YI C, et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics[J]. Advanced Functional Materials,2020,30(29):1910026. doi: 10.1002/adfm.201910026
    YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electro-nics[J]. Advanced Materials,2020,32(10):e1907495. doi: 10.1002/adma.201907495
    FOROUGHI J, SPINKS G M, ANTIOHOS D, et al. Highly conductive carbon nanotube-graphene hybrid yarn[J]. Advanced Functional Materials,2014,24(37):5859-5865. doi: 10.1002/adfm.201401412
    SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30(12):1910504. doi: 10.1002/adfm.201910504
    HU X, TIAN M, XU T, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano,2020,14(1):559-567. doi: 10.1021/acsnano.9b06899
    LU C, PARK S, RICHNER T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances,2017,3(3):1600955. doi: 10.1126/sciadv.1600955
    WANG L, TIAN M, QI X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments[J]. Langmuir,2021,37(10):3122-3129. doi: 10.1021/acs.langmuir.0c03595
    NING C, DONG K, CHENG R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials,2020,31(4):2006679.
    CHEN G, WANG H, GUO R, et al. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics[J]. ACS Applied Materials & Interfaces,2020,12(5):6112-6118.
    ZHENG L, ZHU M, WU B, et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Science Advances, 2021, 7(22): 239-257.
    DU X, TIAN M, SUN G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications[J]. ACS Applied Materials & Interfaces,2020,12(50):55876-55883.
    LI M, LI Z, YE X, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles[J]. ACS Applied Materials & Interfaces,2021,13(14):17110-17117.
    CHEN S, LIU H, LIU S, et al. Transparent and waterproof ionic liquid-based fibers for highly durable multifunctional sensors and strain-insensitive stretchable conductors[J]. ACS Applied Materials & Interfaces,2018,10(4):4305-4314.
    HUANG Y, HU H, HUANG Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015, 9(5): 4766-4775.
    SHENG M, WANG W, LI L, et al. All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,630:127535. doi: 10.1016/j.colsurfa.2021.127535
    SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature,2021,591(7849):240-245. doi: 10.1038/s41586-021-03295-8
    CHENG Y, WANG R, CHAN K H, et al. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors[J]. ACS Nano,2018,12(4):3898-3907. doi: 10.1021/acsnano.8b01372
    CHOI B, LEE J, HAN H, et al. Highly conductive fiber with waterproof and self-cleaning properties for textile electronics[J]. ACS Applied Materials & Interfaces,2018,10(42):36094-36101.
    GUAN F, XIE Y, WU H, et al. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity[J]. ACS Nano,2020,14(11):15428-15439. doi: 10.1021/acsnano.0c06063
    SUN F, TIAN M, SUN X, et al. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer[J]. Nano Letters,2019,19(9):6592-6599. doi: 10.1021/acs.nanolett.9b02862
    LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles[J]. Science,2015,349(6246):400-404. doi: 10.1126/science.aaa7952
    LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy,2021,84:105954.
    ZHAO Z, XIA K, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743.
    ZHANG X, WANG Q. Fibrous and flexible electrodes comprising hierarchical nanostructure graphene for supercapacitors[J]. Micro & Nano Letters,2020,15(14):992-996.
    ZHANG J, SEYEDIN S, QIN S, et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors[J]. Small,2019,15(8):e1804732. doi: 10.1002/smll.201804732
    HUANG Y, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano,2017,11(9):8953-8961. doi: 10.1021/acsnano.7b03322
    HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597(7874):57-63. doi: 10.1038/s41586-021-03772-0
    LIAO M, WANG C, HONG Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method[J]. Nature Nanotechnology, 2022 , 17(4): 35058651.
    MA Y, OUYANG J, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy,2021,85:105941. doi: 10.1016/j.nanoen.2021.105941
    JIN L, XIAO X, DENG W, et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators[J]. Nano Letters,2020,20(9):6404-6411. doi: 10.1021/acs.nanolett.0c01987
    COOPER C B, ARUTSELVAN K, LIU Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers[J]. Advanced Functional Materials,2017,27(20):1605630. doi: 10.1002/adfm.201605630
    ZHU Z, LIU C, JIANG F, et al. Flexible fiber-shaped hydrogen gas sensor via coupling palladium with conductive polymer gel fiber[J]. Journal of Hazardous Materials,2021,411:125008. doi: 10.1016/j.jhazmat.2020.125008
    ZHAI W, LI X, XIA Q, et al. Multi-functional and flexible helical fiber sensor for micro-deformation detection, temperature sensing and ammonia gas monitoring[J]. Composites Part B: Engineering,2021,211:108621. doi: 10.1016/j.compositesb.2021.108621
    CHEN S, LOU Z, CHEN D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies,2016,1(7):1600136. doi: 10.1002/admt.201600136
    LEE S, SHIN S, LEE S, et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics[J]. Advanced Functional Materials,2015,25(21):3114-3121. doi: 10.1002/adfm.201500628
    CHENG Y, WANG R, SUN J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion[J]. Advanced Materials,2015,27(45):7365-7371. doi: 10.1002/adma.201503558
    CAO Z, WANG R, HE T, et al. Interface-controlled conduc-tive fibers for wearable strain sensors and stretchable conducting wires[J]. ACS Applied Materials & Interfaces,2018,10(16):14087-14096. doi: 10.1021/acsami.7b19699
    WANG C, LIU Y, QU X, et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber[J]. Advanced Materials,2022,34(16):e2105416.
    WANG C, QU X, ZHENG Q, et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment[J]. ACS Nano,2021,15(6):10130-10140. doi: 10.1021/acsnano.1c02010
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (773) PDF downloads(103) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint