Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHENG Zongmin, HE Tian, YANG Zhen, et al. Research progress and the prospect of humidity response actuators[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001
Citation: ZHENG Zongmin, HE Tian, YANG Zhen, et al. Research progress and the prospect of humidity response actuators[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1354-1364. doi: 10.13801/j.cnki.fhclxb.20220511.001

Research progress and the prospect of humidity response actuators

doi: 10.13801/j.cnki.fhclxb.20220511.001
Funds:  National Natural Science Foundation (21805146)
  • Received Date: 2022-02-23
  • Accepted Date: 2022-05-05
  • Rev Recd Date: 2022-04-23
  • Available Online: 2022-05-12
  • Publish Date: 2023-03-15
  • In this review, the research progress of humidity response actuators in recent years is summarized. The responsive materials and actuator structural design are mainly discussed starting from the classification and driving principle of humidity response actuators. The current development status of humidity response materials and the existing key scientific difficulties are systematically summarized. This research attempts to provide a new design idea for intelligent micro-actuators with novel functions. Multiple stimulation response, programmable, multifunctional, and the integration of driving-sensing-control will be a breakthrough in the future research of humidity response actuators.


  • loading
  • [1]
    ILAMI M, BAGHERI H, AHMED R, et al. Materials, actuators, and sensors for soft bioinspired robots[J]. Advanced Materials,2020,33(19):2003139.
    SON H, YOON C. Advances in stimuli-responsive soft robots with integrated hybrid materials[J]. Actuators,2020,9:115. doi: 10.3390/act9040115
    邢志广, 林俊, 赵建文. 人工肌肉驱动器研究进展综述[J]. 机械工程学报, 2021, 57(9):1-11. doi: 10.3901/JME.2021.09.001

    XING Zhiguang, LIN Jun, ZHAO Jianwen. A review of the research progress of artificial muscle actuator[J]. Journal of Mechanical Engineering,2021,57(9):1-11(in Chinese). doi: 10.3901/JME.2021.09.001
    PARKA Y, CHEN X. Water-responsive materials for sustainable energy applications[J]. Journal of Materials Che-mistry A,2020,8:15227-15244. doi: 10.1039/D0TA02896G
    NG C S X, TAN M W M, XU C Y, et al. Locomotion of miniature soft robots[J]. Advanced Materials,2021,33(19):e2003558. doi: 10.1002/adma.202003558
    FOROUGHI J, SPINKS G. Carbon nanotube and graphene fiber artificial muscles[J]. Nanoscale Advances,2019,1:4592-4614. doi: 10.1039/C9NA00038K
    WANG Y, WANG Z, LU Z Y, et al. Humidity- and water-responsive torsional and contractile lotus fiber yarn artificial muscles[J]. ACS Applied Materials & Interfaces,2021,13(5):6642-6649.
    LI X F, ZHUANG Z, QI D, et al. High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing[J]. Sensors and Actuators B: Chemical,2021,330:129239.
    JING Y M, SHI Q W, HOU C Y, et al. Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing[J]. Carbon,2020,168:546-552. doi: 10.1016/j.carbon.2020.06.074
    DINGLER C, MULLER H, WIELAND M, et al. From understanding mechanical behavior to curvature prediction of humidity-triggered bilayer actuators[J]. Advanced Materials,2021,33(9):e2007982. doi: 10.1002/adma.202007982
    AMJADI M, S M. High-performance multiresponsive paper actuators[J]. ACS Nano,2016,10(11):10202-10210. doi: 10.1021/acsnano.6b05545
    LI M T, WANG X, DONG B, et al. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator[J]. Nature Communications,2020,11(1):3988. doi: 10.1038/s41467-020-17775-4
    LIMA M D, LI N, JUNG DE ANDRADE M, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles[J]. Science,2012,338:928-932. doi: 10.1126/science.1226762
    HE S S, CHEN P N, QIU L B, et al. A mechanically actuating carbon-nanotube fiber in response to water and moisture[J]. Angewandte Chemie,2015,54(49):14880-14884. doi: 10.1002/anie.201507108
    CHEN M L, FRUEH J, WANG D L, et al. Polybenzoxazole nanofiber reinforced moisture-responsive soft actuators[J]. Scientific Reports,2017,7(1):769. doi: 10.1038/s41598-017-00870-w
    ZHOU P D, CHEN L Z, YAO L Q, et al. Humidity- and light-driven actuators based on carbon nanotube-coated paper and polymer composite[J]. Nanoscale,2018,10(18):8422-8427. doi: 10.1039/C7NR09580E
    CHEN H, GE Y, YE S, et al. Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis[J]. Nanoscale,2020,12(10):6104-6110. doi: 10.1039/D0NR00932F
    JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752. doi: 10.1126/science.1245711
    CHENG H H, LIU J, ZHAO Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition,2013,52(40):10482-10486. doi: 10.1002/anie.201304358
    GE Y H, CAO R, YE S J, et al. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients[J]. Chemical Communications,2018,54(25):3126-3129. doi: 10.1039/C8CC00394G
    QIU Y Y, WANG M T, ZHANG W Z, et al. An asymmetric graphene oxide film for developing moisture actuators[J]. Nanoscale,2018,10(29):14060-14066. doi: 10.1039/C8NR01785A
    WANG M T, LI Q C, SHI J X, et al. Bio-inspired high sensitivity of moisture-mechanical GO films with period-gradient structures[J]. ACS Applied Materials & Interfaces,2020,12(29):33104-33112.
    ZHANG Y L, LIU Y Q, HAN D D, et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials,2019,31(32):e1901585.
    LI H, WANG J F. Ultrafast yet controllable dual-responsive all-carbon actuators for implementing unusual mechanical movements[J]. ACS Applied Materials & Interfaces,2019,11(10):10218-10225.
    SUN H B, CHEN Z B, MAO J W, et al. Programmable deformation of patterned bimorph actuator swarm[J]. National Science Review,2020,7(4):775-785. doi: 10.1093/nsr/nwz219
    YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    WANG J F, MA H X, LIU Y Y, et al. MXene-based humidity-responsive actuators: Preparation and properties[J]. ChemPlusChem,2021,86(3):406-417. doi: 10.1002/cplu.202000828
    WANG J F, LIU Y Y, CHENG Z J, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033.
    CAO J, ZHOU Z H, SONG Q C, et al. Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-Inspired mesoscale assembly of hybrid nanostructures[J]. ACS Nano,2020,14(6):7055-7065. doi: 10.1021/acsnano.0c01779
    LI L L, ZHAO S, LUO X J, et al. Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances[J]. Carbon,2021,175:594-602. doi: 10.1016/j.carbon.2020.10.090
    ZHOU Z X, ZHANG Y Y, SHEN Y F, et al. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more[J]. Chemical Society Reviews,2018,47(7):2298-2321. doi: 10.1039/C7CS00840F
    RONO N, KIBET J K, MARTINCIGH B S, et al. A review of the current status of graphitic carbon nitride[J]. Critical Reviews in Solid State and Materials Sciences,2021,46(3):189-217.
    ARAZOE H, MIYAJIMA D, AKAIKE K, et al. An autonomous actuator driven by fluctuations in ambient humidity[J]. Nature Materials,2016,15:1084-1089. doi: 10.1038/nmat4693
    WU N N, BAI X, PAN D, et al. Recent advances of asymmetric supercapacitors[J]. Advanced Materials Interfaces,2020,8(1):2001710.
    OLIVA P, LEONARDI J, LAURENT J F, et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J]. Journal of Power Sources,1982,8:229-255. doi: 10.1016/0378-7753(82)80057-8
    KWAN K W, NGAN A H W. A high-performing, visible-light-driven actuating material responsive to ultra-low light intensities[J]. Advanced Materials Technologies,2019,4(12):1900746. doi: 10.1002/admt.201900746
    RAMESH T N, VISHNU KAMATH P. The effect of 'crystallinity' and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes[J]. Journal of Solid State Electrochemistry,2008,13(5):763-771.
    KWAN K W, NGAN A H W. Visible-light-driven, nickel-doped cobalt oxides/hydroxides actuators with high stability[J]. ACS Applied Materials & Interfaces,2020,12(27):30557-30564.
    TROYANO J, CARNE-SANCHEZ A, PEREZ-CARVAJAL J, et al. A Self-folding polymer film based on swelling metal-organic frameworks[J]. Angewandte Chemie,2018,57(47):15420-15424. doi: 10.1002/anie.201808433
    YANG M F, WANG S Q, LIU Z Y, et al. Fabrication of moisture-responsive crystalline smart materials for water harvesting and electricity transduction[J]. Journal of the American Chemical Society,2021,143(20):7732-7739. doi: 10.1021/jacs.1c01831
    WANG W, XIANG C X, LIU Q Z, et al. Natural alginate fiber-based actuator driven by water or moisture for energy harvesting and smart controller applications[J]. Journal of Materials Chemistry A,2018,6(45):22599-22608. doi: 10.1039/C8TA08064J
    ZHAO Z, HWANG Y, YANG Y, et al. Actuation and locomotion driven by moisture in paper made with natural pollen[J]. Proceedings of the National Academy of Sciences,2020,117(16):8711-8718. doi: 10.1073/pnas.1922560117
    BEREGOI M, PREDA N, EVANGHELIDIS A, et al. Versatile actuators based on polypyrrole-coated metalized eggshell membranes[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10173-10181.
    LIU D B, TARAKANOVA A, HSU C C, et al. Spider dragline silk as torsional actuator driven by humidity[J]. Science Advances,2019,5(3):aau9183. doi: 10.1126/sciadv.aau9183
    JIA T J, WANG Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials,2019,29(18):1808241. doi: 10.1002/adfm.201808241
    LV C, XIA H, SHI Q, et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films[J]. Advanced Materials Interfaces,2017,4(9):1601002. doi: 10.1002/admi.201601002
    SHIN B, HA J, LEE M, et al. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity[J]. Science Robotics,2018,3:eaar2629. doi: 10.1126/scirobotics.aar2629
    DOU Y Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications,2019,10(1):5293. doi: 10.1038/s41467-019-13257-4
    WANG Y R, FENG P P, LIU R, et al. Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity[J]. Sensors and Actuators B: Chemical,2021,330:129236. doi: 10.1016/j.snb.2020.129236
    REN Z W, DING Y F, NIE J H, et al. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators[J]. ACS Applied Materials& Interfaces,2019,11(6):6143-6153.
    王格格, 张居中, 刘水任, 等. 响应性交联液晶高分子仿生致动器的研究进展[J]. 高分子学报, 2021, 52(2):124-145.

    WANG Gege, ZHANG Juzhong, LIU Shuiren, et al. Research progress of liquid crystal polymer biomimetic actuators in response to sexual intercourse[J]. Acta Polymerica Sinica,2021,52(2):124-145(in Chinese).
    LIU Y Y, XU B, SUN S T, et al. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers[J]. Advanced Materials,2017,29(9):1604792. doi: 10.1002/adma.201604792
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (678) PDF downloads(55) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint