Citation: | BAO Chengpeng, ZHOU Yajie, DONG Lan, et al. Research progress in thermoelectric properties of PEDOT∶PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 649-664. doi: 10.13801/j.cnki.fhclxb.20220505.001 |
[1] |
PARK T, PARK C, KIM E, et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips[J]. Energy & Environmental Science,2013,6(3):788-792.
|
[2] |
EL-SHAMY A G. New free-standing and flexible PVA/carbon quantum dots (CDots) nanocomposite films with promising power factor and thermoelectric power applications[J]. Materials Science in Semiconductor Processing,2019,100:245-254. doi: 10.1016/j.mssp.2019.04.004
|
[3] |
EL-SHAMY A G. Novel hybrid nanocomposite based on poly(vinyl alcohol)/carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications[J]. Composites Part B: Engineering,2019,174:106993. doi: 10.1016/j.compositesb.2019.106993
|
[4] |
TAN G, STOUMPOS C C, WANG S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance[J]. Advanced Energy Materials,2017,7(18):1700099.
|
[5] |
WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride made for efficient thermoelectric cooling or temperature management uses Bi2Te3[J]. Advanced Energy Materials,2019,5(6):1800904.
|
[6] |
VISHWAKARMA A, CHAUHAN N S, BHARDWAJ R, et al. Melt-spun SiGe nano-alloys: Microstructural engineering towards high thermoelectric efficiency[J]. Journal of Electronic Materials,2021,50(1):364-374. doi: 10.1007/s11664-020-08560-6
|
[7] |
JIANG Q L, LIU C C, XU J K, et al. Improved thermoelectric performance of PEDOT : PSS films prepared by polar-solvent vapor annealing method[J]. Journal of Materials Science Materials in Electronics,2013,24(11):4240-4246. doi: 10.1007/s10854-013-1391-z
|
[8] |
DISALSO F J. Thermoelectric cooling and power generation[J]. Science,1999,285(5427):703-705.
|
[9] |
POMOGAILO S I, DZHARDIMALIEVA G I, ERSHOVA V A, et al. Synthesis and properties of Rh6- and Os3-cluster-containing monomers and their copolymers with styrene[J]. Macromolecular Symposia,2002,186(1):155-160. doi: 10.1002/1521-3900(200208)186:1<155::AID-MASY155>3.0.CO;2-J
|
[10] |
CHEN Y N, ZHAO Y, LIANG Z Q. Solution processed orga-nic thermoelectrics: Towards flexible thermoelectric modules[J]. Energy & Environmental Science,2015,8:401-422.
|
[11] |
ZHANG Q, SUN Y M, XU W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently[J]. Advanced Materials,2015,26(40):6829-6851.
|
[12] |
WANG H, YU C. Organic thermoelectrics: Materials preparation, performance optimization, and device integration[J]. Joule,2019,3(1):53-80. doi: 10.1016/j.joule.2018.10.012
|
[13] |
王斌, 邹贺隆, 刘雨, 等. 有机热电材料研究进展[J]. 南昌航空大学学报(自然科学版), 2020, 34(112):36-47.
WANG Bin, ZOU Helong, LIU Yu, et al. Research progress of organic thermoelectric materials[J]. Journal of Nanchang Hangkong University (Natural Science Edition),2020,34(112):36-47(in Chinese).
|
[14] |
FAN Z, DU D H, OUYANG J Y, et al. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface[J]. Nano Energy,2018,51:481-488. doi: 10.1016/j.nanoen.2018.07.002
|
[15] |
FAN Z, OUYANG J Y. Thermoelectric properties of PEDOT: PSS[J]. Advanced Electronic Materials,2019,5(11):1800769. doi: 10.1002/aelm.201800769
|
[16] |
GROENENDAAL L B, JONAS F, FREITAG D, et al. Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials,2000,7(7):481-494.
|
[17] |
MENG Q F, JIANG Q L, CAI K F, et al. Preparation and thermoelectric properties of PEDOT∶ PSS coated Te nano-rod/PEDOT∶PSS composite films[J]. Organic Electronics,2019,64:79-85. doi: 10.1016/j.orgel.2018.10.010
|
[18] |
SHI H, LIU C C, XU J K, et al. Effective approach to improve the electrical conductivity of PEDOT∶PSS: A review[J]. Advanced Electronic Materials,2015,4(1):1500017.
|
[19] |
LEE C S, KIM J Y, LEE D E, et al. Flexible and transparent organic film speaker by using highly conducting PEDOT/PSS as electrode[J]. Synthetic Metals,2003,139(2):457-461. doi: 10.1016/S0379-6779(03)00199-1
|
[20] |
LIN Y J, YANG F M, HUANG C Y, et al. Increasing the work function of poly(3, 4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation[J]. Applied Physics Letters,2007,91(9):092127. doi: 10.1063/1.2777147
|
[21] |
LIM J Y, CHO S, KIM H, et al. Optimum thermoelectric performance of bismuth-antimony-telluride alloy/PEDOT∶PSS nanocomposites prepared by a novel redox process[J]. ACS Applied Energy Materials,2019,2(11):8219-8228. doi: 10.1021/acsaem.9b01702
|
[22] |
FRIEDEL B, KEIVANIDIS P E, BRENNER T J K, et al. Effects of layer thickness and annealing of PEDOT∶PSS layers in organic photodetectors[J]. Macromolecules,2009,42(17):6741-6747. doi: 10.1021/ma901182u
|
[23] |
BENOR A, TAKIZAWA S, CHEN P, et al. Dramatic efficiency improvement in phosphorescent organic light-emitting diodes with ultraviolet-ozone treated poly(3, 4-ethylenedioxythiophene) : poly(styrenesulfonate)[J]. Applied Physics Letters,2009,94(19):193301.
|
[24] |
CHONAN Y, SATO N, KOMIYAMA T, et al. Enhancement of thermoelectric properties of PEDOT∶PSS films by applying an alternating electric field during preparation[J]. Journal of Electronic Materials,2019,48(6):3854-3858. doi: 10.1007/s11664-019-07150-5
|
[25] |
KIM J Y, JUNG J H, JOO J, et al. Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents[J]. Synthetic Metals,2002,126(2-3):311-316. doi: 10.1016/S0379-6779(01)00576-8
|
[26] |
JIANG F X, XU J K, LU B Y, et al. Thermoelectric performance of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)[J]. Chinese Physics Letters,2008,25:2202-2205. doi: 10.1088/0256-307X/25/6/076
|
[27] |
刘聪聪. 聚3, 4-二氧乙撑噻吩∶聚苯乙烯磺酸及其复合材料的热电性能研究[D]. 南昌: 江西科技师范大学, 2011.
LIU Congcong. Thermoelectric properties of poly(3, 4-dioxyethiophene)∶polystyrene sulfonic acid and its compo-sites[D]. Nanchang: Jiangxi Science and Technology Normal University, 2011(in Chinese).
|
[28] |
KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials,2013,12(8):719-723. doi: 10.1038/nmat3635
|
[29] |
CHAO Y, WILHITE A, GONG X, et al. Enhanced thermoelectric properties of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) by binary secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(17):8984-8989.
|
[30] |
FAN Z, DU D H, OUYANG J Y, et al. Significant enhancement in the thermoelectric properties of PEDOT∶PSS films through a treatment with organic solutions of inorganic salts[J]. ACS Applied Materials & Interfaces,2016,8(35):23204-23211.
|
[31] |
CRUZ I, REYES M, LOPEZ-SANDOVAL R. Formation of polystyrene sulfonic acid surface structures on poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) thin films and the enhancement of its conductivity by using sulfuric acid[J]. Thin Solid Films,2013,531(15):385-390.
|
[32] |
XIA Y J, OUYANG J Y. Significant conductivity enhancement of conductive poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids[J]. ACS Applied Materials & Interfaces,2010,2(2):474-483.
|
[33] |
MENGISTIE D A, IBRAHEM M A, WANG P C, et al. Highly conductive PEDOT∶PSS treated with formic acid for ITO-free polymer solar cells[J]. ACS Applied Materials & Interfaces,2014,6(4):2292-2299.
|
[34] |
MENGISTIE D A, CHEN C H, BOOPATHI K M, et al. Enhanced thermoelectric performance of PEDOT∶PSS flexible bulky papers by treatment with secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(1):94-100.
|
[35] |
LIU C C, SHI H, XU J K, et al. Improved thermoelectric properties of PEDOT∶PSS nanofilms treated with oxalic acid[J]. Journal of Electronic Materials,2015,44(6):1791-1795. doi: 10.1007/s11664-014-3557-8
|
[36] |
KIM N, KEE S, LEE S H, et al. Transparent electrodes: Highly conductive PEDOT∶PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials,2014,26(14):2268-2272. doi: 10.1002/adma.201304611
|
[37] |
FAN Z, LI P C, OUYANG J Y, et al. Significantly enhanced thermoelectric properties of PEDOT∶PSS films through sequential post-treatments with common acids and bases[J]. Advanced Energy Materials,2016,7(8):1602116.
|
[38] |
XU S, HONG M, SHI X L, et al. High-performance PEDOT∶PSS flexible thermoelectric materials and their devices by triple post-treatments[J]. Chemistry of Materials,2019,31(14):5238-5244. doi: 10.1021/acs.chemmater.9b01500
|
[39] |
SHI H, LIU C C, JIANG Q L, et al. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance[J]. Nanotechnology,2015,25(24):245401.
|
[40] |
CAO X L, ZHANG M, YANG Y, et al. Thermoelectric PEDOT∶PSS sheet/SWCNTs composites films with layered structure[J]. Composites Communications,2021,27:100869. doi: 10.1016/j.coco.2021.100869
|
[41] |
WEI S S, HUANG X, DENG L, et al. Facile preparations of layer-like and honeycomb-like films of poly(3, 4-ethylenedioxythiophene)/carbon nanotube composites for thermoelectric application[J]. Composites Science and Technology,2021,208:108759. doi: 10.1016/j.compscitech.2021.108759
|
[42] |
DU Y, SHI Y L, MENG Q F, et al. Preparation and thermoelectric properties of flexible SWCNT/PEDOT∶PSS compo-site film[J]. Synthetic Metals,2020,261:116318. doi: 10.1016/j.synthmet.2020.116318
|
[43] |
LEE W, KANG Y H, LEE J Y, et al. Improving the thermoelectric power factor of CNT/PEDOT∶PSS nanocomposite films by ethylene glycol treatment[J]. RSC Advances,2016,6(58):53339-53344. doi: 10.1039/C6RA08599G
|
[44] |
LIU S Q, LI H, HE C B. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT∶PSS nanocomposites[J]. Carbon,2019,149:25-32. doi: 10.1016/j.carbon.2019.04.007
|
[45] |
CHUNG S H, DONG H K, KIM H, et al. Thermoelectric properties of PEDOT∶PSS and acid-treated SWCNT composite films[J]. Materials Today Communications,2019,23:100867.
|
[46] |
DENG W J, DENG L, LI Z P, et al. Synergistically boosting thermoelectric performance of PEDOT∶PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid[J]. ACS Applied Materials & Interfaces,2021,13(10):12131-12140.
|
[47] |
ZHANG Z, CHEN G M, WANG H F, et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT∶PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry—An Asian Journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
|
[48] |
EL-SHAMY A G. Acido-treatment of PEDOT∶PSS/carbon dots (CDots) nanocomposite films for high thermoelectric power factor performance and generator[J]. Materials Chemistry and Physics,2020,257(1):123762.
|
[49] |
LIU Y Q, WENG B, RAZAL J M, et al. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films[J]. Scientific Reports,2015,5:17045. doi: 10.1038/srep17045
|
[50] |
PARK M U, SONG M, LEE S M, et al. Fabrication process of bilayer RGO/PEDOT∶PSS film for flexible transparent conductive electrode[J]. Journal of Nanoscience & Nanotechnology,2018,18(9):6147-6151.
|
[51] |
SARABIA-RIQUELME R, RAMOS-FERNANDEZ G, MARTIN-GULLON I, et al. Synergistic effect of graphene oxide and wet-chemical hydrazine/deionized water solution treatment on the thermoelectric properties of PEDOT∶PSS sprayed films[J]. Synthetic Metals,2016,222:330-337. doi: 10.1016/j.synthmet.2016.11.013
|
[52] |
LIU Y X, LIU H H, WANG J P, et al. Thermoelectric behavior of PEDOT∶PSS/CNT/graphene composites[J]. Journal of Polymer Engineering,2017,38(4):381-389.
|
[53] |
MYINT M T Z, INOUE H, ICHIMURA S, et al. Influence of pressure of nitrogen gas on structure and thermoelectric properties of acid-treated PEDOT∶PSS films[J]. Journal of Materials Science: Materials in Electronics,2019,30:13534-13542. doi: 10.1007/s10854-019-01721-2
|
[54] |
VENKATASUBRAMANIAN R, SILVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
|
[55] |
CAO Y Q, ZHAO X B, ZHU T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters,2008,92(14):143106. doi: 10.1063/1.2900960
|
[56] |
KIM H S, HONG S J. Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering[J]. Journal of Alloys and Compounds,2014,586:S428-S431. doi: 10.1016/j.jallcom.2013.05.163
|
[57] |
DOU Y C, QIN X Y, LI D, et al. Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles[J]. Journal of Applied Physics,2013,114:044906. doi: 10.1063/1.4817074
|
[58] |
HE W, ZHANG G, ZHANG X X, et al. Recent development and application of thermoelectric generator and cooler[J]. Applied Energy,2015,143(1):1-25.
|
[59] |
XIONG J H, XU J K, LIU C C, et al. Thermoelectric performance of PEDOT∶PSS/Bi2Te3-nanowires: A comparison of hybrid types[J]. Journal of Materials Science Materials in Electronics,2016,27:1769-1776. doi: 10.1007/s10854-015-3952-9
|
[60] |
DU Y, CHEN S, CAI K F, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT∶PSS composite films[J]. ACS Applied Materials & Interfaces,2014,6(8):5735-5743.
|
[61] |
KIM W S, ANOOP G, JO J Y, et al. Feasible tuning of barrier energy in PEDOT∶PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy,2020,67:104207. doi: 10.1016/j.nanoen.2019.104207
|
[62] |
GOO G, ANOOP G, JO J Y, et al. Proton-irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT∶PSS composite films[J]. Advanced Electronic Materials,2019,5(4):1800786. doi: 10.1002/aelm.201800786
|
[63] |
张红晨, 程颖, 荣剑英. P型Bi0.5Sb1.5Te3热压烧结热电材料的制备与性能研究[J]. 哈尔滨师范大学自然科学学报, 2007(2):45-48.
ZHANG Hongchen, CHENG Ying, RONG Jianying. Preparation and properties of P Bi0.5Sb1.5Te3 thermoelectric materials by hot pressing[J]. Natural Science Journal of Harbin Normal University,2007(2):45-48(in Chinese).
|
[64] |
BHARTI M, SINGH A, SAINI G, et al. Boosting thermoelectric power factor of free-standing poly(3, 4-ethylenedioxythiophene)∶polystyrenesulphonate films by incorporation of bismuth antimony telluride nanostructures[J]. Journal of Power Sources,2019,435(30):226758.
|
[65] |
WANG Y, HONG M, LIU W, et al. Bi0.5Sb1.5Te3/PEDOT∶PSS-based flexible thermoelectric film and device[J]. Chemical Engineering Journal,2020,397:125360. doi: 10.1016/j.cej.2020.125360
|
[66] |
BOYCE J B, HUBERMAN B A. Superionic conductors: Transitions, structures, dynamics[J]. Physics Reports,1979,51(4):189-265. doi: 10.1016/0370-1573(79)90067-X
|
[67] |
MENG Q F, SONG H J, DU Y, et al. Facile preparation of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)/Ag2Te nanorod composite films for flexible thermoelectric generator[J]. Journal of Materiomics,2021,7(2):302-309. doi: 10.1016/j.jmat.2020.10.011
|
[68] |
MAZZIO K A, KOJDA D, RUBIO-GOVEA R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT∶PSS thermoelectric materials via stoichiometric control during solution-based synthesis[J]. ACS Applied Energy Materials,2020,3(11):10734-10743. doi: 10.1021/acsaem.0c01774
|
[69] |
DU Y, CAI K F, SHEN S Z, et al. ZnO flower/PEDOT∶PSS thermoelectric composite films[J]. Journal of Materials Science: Materials in Electronics,2016,27:10289-10293. doi: 10.1007/s10854-016-5111-3
|
[70] |
CHENG X J, WANG L, WANG X, et al. Flexible films of poly(3, 4-ethylenedioxythiophene)∶poly(styrenesulfonate)/SnS nanobelt thermoelectric composites[J]. Composites Science and Technology,2017,155(8):247-251.
|
[71] |
SUN X, SUN T, LU X, et al. Simultaneously improving thermopower and electrical conductivity via polar organic solvents aided layer-by-layer technique[J]. Materials Science in Semiconductor Processing,2020,108(13):104909.
|
[72] |
PARK D, KIM M, KIM J. Fabrication of PEDOT∶PSS/Ag2Se nanowires for polymer-based thermoelectric applications[J]. Polymers,2020,12(12):2932. doi: 10.3390/polym12122932
|
[73] |
LIU C C, JIANG F X, XU J K, et al. Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials[J]. Journal of Electronic Materials,2011,40(5):948-952. doi: 10.1007/s11664-010-1465-0
|
[74] |
BUBNOVA O, CRISPIN X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science,2012,5:9345-9362.
|
[75] |
LIU Y, SONG Z J, WANG L J, et al. Preparation of bulk Ag-NWs/PEDOT∶PSS composites: A new model towards high-performance bulk organic thermoelectric materials[J]. RSC Advances,2015,5(56):45106-45112. doi: 10.1039/C5RA05551B
|
[76] |
SON W, LEE S H, KIM J H, et al. Thermoelectric behavior of conducting polymers hybridized with inorganic nanoparticles[J]. Journal of Electronic Materials,2016,45(6):2935-2942. doi: 10.1007/s11664-016-4356-1
|
[77] |
SONG H J, CAI K F. Preparation and properties of PEDOT∶PSS/Te nanorod composite films for flexible thermoelectric power generator[J]. Energy,2017,125(15):519-525.
|
[78] |
YEE S K, COATES N E, MAJUMDAR A, et al. Thermoelectric power factor optimization in PEDOT∶PSS tellurium nanowire hybrid composites[J]. Physical Chemistry Chemical Physics,2013,15(11):4024-4032. doi: 10.1039/c3cp44558e
|
[79] |
LIANG Y D, XIONG Y, ZHENG J J, et al. Study of thermoelectric properties in the PEDOT∶PSS/Te double-layer thin film devices[J]. Composites Communications,2021,27:100888. doi: 10.1016/j.coco.2021.100888
|
[80] |
BAE E J, KANG Y H, JANG K S, et al. Enhancement of thermoelectric properties of PEDOT∶PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment[J]. Scientific Reports,2016,6:18805. doi: 10.1038/srep18805
|
[81] |
THONGKHAM W, LERTSATITTHANAKORN C, KANPITCHA J K, et al. Self-assembled three-dimensional Bi2Te3 nanowire-PEDOT∶PSS hybrid nanofilm network for ubiquitous thermoelectrics[J]. ACS Applied Materials & Interfaces,2019,11(6):6624-6633.
|
[82] |
WANG J Y, FAN X, LI Y F, et al. High-efficiency flexible organic photovoltaics and thermoelectricities based on thionyl chloride treated PEDOT∶PSS electrodes[J]. Frontiers in Chemistry,2022,9:807538. doi: 10.1039/D2QO90028A
|
[83] |
YANG J J, LI X J, JIA Y H, et al. Enhanced thermoelectric performance of PEDOT∶PSS films via ionic liquid post-treatment[J]. Chinese Physics B,2022,31(2):027302. doi: 10.1088/1674-1056/ac2487
|
[84] |
LI X, ZOU R, LIU Z, et al. Deciphering the superior thermoelectric property of post-treatment-free PEDOT∶PSS/IL hybrid by X-ray and neutron scattering characterization[J]. npj Flexible Electronics,2022,6:1691.
|
[85] |
WEI S S, LIU L, HUANG X, et al. Flexible and foldable films of SWCNT thermoelectric composites and an S-shape thermoelectric generator with a vertical temperature gradient[J]. ACS Applied Materials & Interfaces,2022,14(4):5973-5982.
|
[86] |
FU P, XIAO J K, GONG J Z, et al. Interfacial enhancement effect of graphene quantum dots on PEDOT∶PSS/single-walled carbon nanotubes thermoelectric materials[J]. Synthetic Metals,2021,280:116861. doi: 10.1016/j.synthmet.2021.116861
|