Citation: | LYU Lihua, WANG Rongrui, LIU Wendi, et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1477-1483. doi: 10.13801/j.cnki.fhclxb.20220425.001 |
[1] |
李善霖, 段华军, 汪鑫, 等. 镀镍碳纤维-碳纤维-玻璃纤维/乙烯基酯树脂导电复合材料的设计制备及其电磁性能[J]. 复合材料学报, 2018, 35(7):1709-1715.
LI Shanlin, DUAN Huajun, WANG Xin, et al. Design, preparation and electromagnetic properties of nickel plated carbon fiber carbon fiber glass fiber/vinyl ester resin conductive composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1709-1715(in Chinese).
|
[2] |
SHAO T Q, MA H, WANG J, et al. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J]. Journal of the European Ceramic Society,2020,40(5):2013-2019. doi: 10.1016/j.jeurceramsoc.2020.01.036
|
[3] |
CHUH A, WONG W, LEE A. Electromagnetic wave absorption characteristics of single and double layer absorbers based on trimetallic [emailprotected] metalorganic framework incorporated with MWCNTs[J]. Synthetic Metals,2020,125(4):853-854.
|
[4] |
LIU Y J, YANG Y F. A study on the electromagnetic properties of graphite/bismuth/bismuth oxide-coated composites[J]. Textile Research Journal,2021(12):1-13.
|
[5] |
GI W J, YEONG H N, WON H C, et al. Electromagnetic-mechanical repair patch of radar-absorbing structure with electroless nickel-plated glass fabric damaged by lightning strike[J]. Journal of Composite Materials,2021,55(7):989-1002. doi: 10.1177/0021998320961558
|
[6] |
ZHAO S X, MA H, SHAO T Q, et al. Thermally stable ultra-thin and refractory microwave absorbing coating[J]. Ceramics International,2021,47(7):337-344.
|
[7] |
HUANG L N, CHEN C G, LI Z J, et al. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures[J]. Nanotechnology,2020,31(16):16-32.
|
[8] |
LI R, QING Y C, LI W, et al. The electromagnetic absorbing properties of plasma-sprayed TiC/Al2O3 coatings under oblique incident microwave irradiation[J]. Ceramics International,2021,47(16):22864-22868. doi: 10.1016/j.ceramint.2021.04.306
|
[9] |
ZHANG H Y, CHEN J Y, WANG Y, et al. Study on frequency selective/absorption/reflection multilayer composite flexible electromagnetic wave absorbing fabric[J]. Textile Research Journal,2021,91(15):16-27.
|
[10] |
LONG L, XU J X, LUO H, et al. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites[J]. Journal of the American Ceramic Society,2020,103(12):11-23.
|
[11] |
李天舒, 王绍凯, 顾轶卓, 等. 碳纳米管膜层间改性碳纤维/双马来酰亚胺复合材料的结构调控及性能[J]. 复合材料学报, 2021, 38(6):1784-1794.
LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure regulation and properties of carbon fiber /bismaleimide composites modified by carbon nanotube films[J]. Acta Materiae Compositae Sinica,2021,38(6):1784-1794(in Chinese).
|
[12] |
张荣华, 史可宇, 李硕, 等. 平纹编织碳纤维增强树脂复合材料离散电导率建模方法[J]. 复合材料学报, 2020, 37(12):3119-3127.
ZHANG Ronghua, SHI Keyu, LI Shuo, et al. Modeling method of discrete conductivity of plain woven carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica,2020,37(12):3119-3127(in Chinese).
|
[13] |
JIAN H, DU Q R, MEN Q Q, et al. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites[J]. Journal of Materials Science & Technology, 2022, 109(20): 105-113.
|
[14] |
TITUS M, YOSHINOBU M, GODWILL M K, et al. Topological defects and unique stacking disorders in honeycomb layered oxide K2Ni2TeO6 nanomaterials: Implications for rechargeable batteries[J]. ACS Applied Nano Materials, 2021(4): 279-287.
|
[15] |
XU F, ZHANG S Y, WANG G G, et al. Lightweight Low〧requency Sound〢bsorbing composites of graphene network reinforced by honeycomb structure[J]. Advanced Materials Interfaces,2021,8(16):183-191.
|
[16] |
BYEONG S K, JEONG G W, CHOI W H, et al. Microwave-absorbing honeycomb core structure with nickel-coated glass fabric prepared by electroless plating[J]. Composite Structures,2021,256(5):113-148.
|
[17] |
LIU Z X, ZHAO W K, YU G C, et al. Fabrication and mechanical behaviors of quartz fiber composite honeycomb with extremely low permittivity[J]. Composite Structures,2021,271(2):129-134.
|
[18] |
ZHAO P, XU Y G, WEI F M, et al. Electromagnetic property of a novel gradient honeycomb composite fabricated by 3D forming[J]. Journal of Magnetism and Magnetic Materials,2020(493):165742-165753.
|
[19] |
LI Z W, MA J X. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and nomex honeycomb[J]. Materials,2020,13(8):1870-1887. doi: 10.3390/ma13081870
|
[20] |
ANOSHKIN A, PISAREV P, ERMAKOV D. Influence of a delamination type defect on the operational life of a sound-absorbing structure with a honeycomb filler[J]. IOP Conference Series Materials Science and Engineering,2020,71(3):12012-12017.
|
[21] |
GE J I, LEE W J, KIM S Y, et al. Electromagnetic damage tolerance for radar absorbing composite structures with impact damage[J]. Composites Science and Technology,2020,199(31):366-373.
|
[22] |
戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8):1997-2004.
DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1997-2004(in Chinese).
|
[23] |
樊威, 孟家光, 孙润军, 等. 混杂纤维增强结构隐身复合材料研究进展[J]. 纺织导报, 2017, 11(1):66-68.
FAN Wei, MENG Jiaguang, SUN Ruijun, et al. Research progress of hybrid fiber reinforced structural stealth composites[J]. China Textile Leader,2017,11(1):66-68(in Chinese).
|
[24] |
CHEN X G, LINDSAY T, WATER T, et al. An overview on fabrication of three-dimensional woven textile preforms for composites[J]. Textile Research Journal,2011,81(9):932-944. doi: 10.1177/0040517510392471
|
[25] |
刘文迪, 吕丽华. 三维机织吸波复合材料的研究进展[J]. 棉纺织技术, 2020, 48(10):81-84. doi: 10.3969/j.issn.1001-7415.2020.10.019
LIU Wendi, LYU Lihua. Research progress of three-dimensional woven microwave absorbing composites[J]. Cotton Textile Technology,2020,48(10):81-84(in Chinese). doi: 10.3969/j.issn.1001-7415.2020.10.019
|
[26] |
国防科学技术工业委员会. 雷达吸波材料反射率测试方法: GJB 2038—94[S]. 北京: 中国标准出版社, 1994.
Commission of Science, Technology and Industry for National Defense (COSTIND) commission. Methods for measurement of reflectivity of radar absorbing material: GJB 2038—94[S]. Beijing: China Standard Press, 1994(in Chinese).
|
[27] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Plastics-Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
|
[28] |
ZHANG M, WANG X X, LIU S Q, et al. Effects of face sheet structure on mechanical properties of 3D integrated woven spacer composites[J]. Fibers and Polymers,2020,21(7):1594-1604. doi: 10.1007/s12221-020-9908-6
|
[29] |
MA Z Y, ZHANG P Z, ZHU J X. Influence of fabric structure on the tensile and flexural properties of three-dimensional angle-interlock woven composites[J]. Journal of Industrial Textiles,2020,15(17):1-17.
|