Citation: | DONG Wei, MENG Lingqiang, ZHAO Meina, et al. Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001 |
[1] |
HONG X, JIN J, WU T, et al. A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:14775-14782. doi: 10.1039/C7TA03552G
|
[2] |
LIU D, LI Y, ZHENG D, et al. Ammonia-treated ordered mesoporous carbons with hierarchical porosity and nitrogen-doping for lithium-sulfur batteries[J]. Chemistryselect,2017,2(24):7160-7168. doi: 10.1002/slct.201700656
|
[3] |
QIU Y, LI W, ZHAO W, et al. High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821. doi: 10.1021/nl5020475
|
[4] |
WU H, XIA L, REN J, et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries[J]. Electrochimica Acta,2018,278:83-92. doi: 10.1016/j.electacta.2018.05.032
|
[5] |
赵桂香, WAIHAFIZ Z A, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学, 2021, 27(6):614-623.
ZHAO Guixiang, WAIHAFIZ Z A, ZHU Fuliang. Nitrogen-sulfur Co-doped porous carbon preparation and its application in lithium-sulfur batteries[J]. Electrochemical Chemistry,2021,27(6):614-623(in Chinese).
|
[6] |
ZHAO Y, BAKENOVA Z, ZHANG Y G, et al. High perfor-mance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries[J]. Ionics,2015,21(7):1925-1930. doi: 10.1007/s11581-015-1376-4
|
[7] |
GONG B, SONG X, SHI Y, et al. Understanding the inhibition of the shuttle effect of sulfides (S≤3) in lithium-sulfur batteries by heteroatom-doped graphene: First-principles study[J]. The Journal of Physical Chemistry C,2020,124:3644-3649. doi: 10.1021/acs.jpcc.9b10314
|
[8] |
SHAN Z, HE Y, NING L, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Applied Surface Science,2020,539:148209.
|
[9] |
黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5):1335-1341.
HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica,2019,36(5):1335-1341(in Chinese).
|
[10] |
LI Q, ZHANG Z, GUO Z, et al. Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core–shell composite[J]. Carbon,2014,78:1-9. doi: 10.1016/j.carbon.2014.05.047
|
[11] |
杨玉艳, 周丽丽, 陈兴华, 等. 锂硫电池正极用氮掺杂的多孔碳纤维载体材料的研究[J]. 现代化工, 2021, 41(6):167-171.
YANG Yuyan, ZHOU Lili, CHEN Xinghua, et al. Nitrogen-doped porous carbon fiber support materials for cathode of lithium sulfur battery[J]. Modern Chemical Industry,2021,41(6):167-171(in Chinese).
|
[12] |
YUAN X, LIU B, HOU H, et al. Facile synthesis of mesoporous graphene platelets with in situ nitrogen and sulfur doping for lithium-sulfur batteries[J]. RSC Advances,2017,7(36):22567-22577. doi: 10.1039/C7RA01946G
|
[13] |
LI Z, JIANG X, LIU J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries[J]. RSC Advances,2018,8:4503-4513. doi: 10.1039/C7RA12978E
|
[14] |
WANG X, LI G, LI M, et al. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries[J]. Journal of Energy Chemistry,2021,53:234-240. doi: 10.1016/j.jechem.2020.05.036
|
[15] |
ZHANG H, GAO Q, LI Z, et al. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery[J]. Electrochimica Acta,2020,343:136079. doi: 10.1016/j.electacta.2020.136079
|
[16] |
ZHA C, WU D, ZHANG T, et al. A facile and effective sulfur loading method: direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery[J]. Energy Storage Materials,2019,17:118-125. doi: 10.1016/j.ensm.2018.11.020
|
[17] |
SHAN L, YURONG C, JING Y, et al. Entrapment of polysulfides by a Ketjen Black & mesoporous TiO2 modified glass fiber separator for high performance lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,779:412-419. doi: 10.1016/j.jallcom.2018.11.261
|
[18] |
WU J, LI S, YANG P, et al. S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries[J]. Jour-nal of Alloys and Compounds,2019,783:279-285. doi: 10.1016/j.jallcom.2018.12.316
|
[19] |
GUO Y, LI J, PITCHERI R, et al. Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability[J]. Chemical Engineering Journal,2019,355:390-398. doi: 10.1016/j.cej.2018.08.143
|
[20] |
WANG F, DING X, SHI R, et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(17):10494-10504. doi: 10.1039/C9TA00544G
|
[21] |
LIN H, ZHANG S, ZHANG T, et al. A cathode-integrated sulfur-deficient Co9S8 catalytic interlayer for the reutilization of “Lost” polysulfides in lithium-sulfur batteries[J]. ACS Nano,2019,13(6):7073-7082. doi: 10.1021/acsnano.9b02374
|
[22] |
WANG N, CHEN B, QIN K, et al. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function[J]. Nano Energy,2019,60:332-339. doi: 10.1016/j.nanoen.2019.03.060
|
[23] |
GUO P, LIU D, LIU Z, et al. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries[J]. Electrochimica Acta,2017,256:28-36. doi: 10.1016/j.electacta.2017.10.003
|
[24] |
SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications,2017,8:14627. doi: 10.1038/ncomms14627
|
[25] |
CUI Z, ZU C, ZHOU W, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):6926-6931. doi: 10.1002/adma.201601382
|
[26] |
ZHOU T, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10(7):1694-1703.
|
[27] |
LIU T, SUN X, SUN S, et al. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:684-692. doi: 10.1016/j.electacta.2018.10.168
|
[28] |
KOU W, LI X, LIU Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano,2019,13(5):5900-5909. doi: 10.1021/acsnano.9b01703
|
[29] |
LI L, REN R, WANG X, et al. High-performance nanostructure Fe2O3 synthesized via novel direct current electric arc method as sulfur-wrapping matrix for lithium-sulfur batteries[J]. International Journal of Energy Research,2022,46(2):1361-1369. doi: 10.1002/er.7253
|
[30] |
RAULO A, GUPTA A, SRIVASTAVA R, et al. Excellent electrochemical performance of lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks[J]. Journal of Electroanalyti-cal Chemistry,2020,880:114829.
|
[31] |
WANG H, WEI D, ZHENG J, et al. Electrospinning MoS2-decorated porous carbon nanofibers for high-perfor-mance lithium-sulfur batteries[J]. ACS Applied Energy Materials,2020,3(12):11893-11899. doi: 10.1021/acsaem.0c02015
|
[32] |
LEI T, LI X, WANG Z, et al. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(4):3707-3713.
|
[33] |
BASAK M, RAHMAN M L, AHMED M F, et al. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and size-strain plot: Different precipitating agent approach[J]. Journal of Alloys and Compounds,2022,895:162694. doi: 10.1016/j.jallcom.2021.162694
|
[34] |
REN J, XIA L, ZHOU Y, et al. A reduced graphene oxide/nitrogen, phosphorus doped porous carbon hybrid framework as sulfur host for high performance lithium-sulfur batteries[J]. Carbon,2018,140:30-40. doi: 10.1016/j.carbon.2018.08.026
|
[35] |
YU J, XIAO J, LI A, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angewandte Chemie,2020,59:13071-13078. doi: 10.1002/anie.202004914
|
[36] |
JIAO L, ZHANG C, GENG C, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9(19):1900219. doi: 10.1002/aenm.201900219
|
[37] |
LONG Q, PEI L, YI Y, et al. Enhanced cycling performance for lithium-sulfur batteries by a laminated 2 D g-C3N4/graphene cathode interlayer[J]. ChemSusChem,2019,12(1):213-223. doi: 10.1002/cssc.201802449
|
[38] |
ZHAO Z, PATHAK R, WANG X, et al. Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery[J]. Electrochimica Acta,2020,364:137117. doi: 10.1016/j.electacta.2020.137117
|
[39] |
ZHAO C, CAI S, XIN F, et al. Prussian blue-derived Fe2O3/sulfur composite cathode for lithium-sulfur batteries[J]. Materials Letters,2014,137(15):52-55.
|
[40] |
JI A, YJ B, JO B, et al. γ-Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-perfor-mance lithium sulfur battery cathode[J]. Journal of Electroanalytical Chemistry,2020,858:113806. doi: 10.1016/j.jelechem.2019.113806
|
[41] |
CHENG Z, SN A, WEI L A, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
|
[42] |
FANG R, ZHAO S, HOU P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28(17):3374-3382. doi: 10.1002/adma.201506014
|
[43] |
MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical communications,2014,50(87):13231-13234. doi: 10.1039/C4CC03410D
|
[44] |
ZHU R, LIN S, JIAO J, et al. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery[J]. Ionics,2020,26(16):2325-2334.
|
[45] |
ZHANG Y, CHANG S, ZHANG D, et al. Flexible FeS@Fe2O3/CNT composite films as self-supporting anodes for high-performance lithium-ion batteries[J]. Nanotechnology,2021,32(28):285404. doi: 10.1088/1361-6528/abf194
|
[46] |
ZOU K, LI N, DAI X, et al. Lightweight free-standing CeF3 nanorod/carbon nanotube composite interlayer for lithium-sulfur batteries[J]. ACS Applied Nano Materials,2020,3(6):5732-5742. doi: 10.1021/acsanm.0c00920
|
[47] |
WANG P, ZENG R, YOU L, et al. Graphene-like matrix composites with Fe2O3 and Co3O4 as cathode materials for lithium sulfur batteries[J]. ACS Applied Nano Materials,2020,3(2):1382-1390. doi: 10.1021/acsanm.9b02250
|
[48] |
KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nature Communications,2015,6:7278. doi: 10.1038/ncomms8278
|
[49] |
PARK G D, JUNG D S, LEE J K, et al. Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries[J]. Chemical Engineering Journal,2019,373:382-392. doi: 10.1016/j.cej.2019.05.038
|
[50] |
CHUNG S H, MANTHIRAM A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.
|
[51] |
YE C, ZHANG L, GUO C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27:1702524. doi: 10.1002/adfm.201702524
|
[52] |
HE W, HE X, DU M, et al. Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as sulfur host for high performance lithium-sulfur batteries[J]. The Journal of Physical Chemistry C,2019,123(26):15924-15934. doi: 10.1021/acs.jpcc.9b02356
|