Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
DONG Wei, MENG Lingqiang, ZHAO Meina, et al. Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001
Citation: DONG Wei, MENG Lingqiang, ZHAO Meina, et al. Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1501-1511. doi: 10.13801/j.cnki.fhclxb.20220424.001

Effect of preparation conditions of Fe2O3-graphene-carbon nanotube composites on sulfur loading properties

doi: 10.13801/j.cnki.fhclxb.20220424.001
Funds:  National Natural Science Foundation of China (21808095); Project of Discipline Innovation Team of Liaoning Technical University (LNTU20 TD-16); Basic Research Project of Education Department of Liaoning Province (LJKZ0339); Funded Project of Discipline Innovation Team of Liaoning Technical University (LNTU20 TD-09)
  • Received Date: 2022-03-03
  • Accepted Date: 2022-04-16
  • Rev Recd Date: 2022-04-13
  • Available Online: 2022-04-24
  • Publish Date: 2023-03-15
  • Lithium sulfur battery is one of the most promising alternatives to traditional lithium-ion battery. The dissolution and poor conductivity of polysulfides are two important factors restricting the application of lithium sulfur battery. In this paper, Fe2O3-reduced graphene oxide (RGO)-carbon nanotube (CNT) composite sulfur carrying materials are synthesized by hydrothermal method. By adjusting the ammonia concentration, the particle size of Fe2O3 in the composites is successfully adjusted. It is found that Fe2O3 with small particles had better adsorption and catalysis. Cathode material synthesized from it at 1 C, the first discharge capacity is 1286 mA·h/g, 718 mA·h/g remains after 500 cycles, and the capacity attenuation rate of each cycle is 0.08%. The average specific capacities at 0.2, 0.5, 1, 2 and 4 C are 983, 825, 769, 673 and 604 mA·h/g, which has good rate performance and good cycle performance at high current. 527 mA·h/g remains after 500 cycles at 5 C. Fe2O3-RGO-CNT-S cathode material is especially suitable for high-performance lithium sulfur batteries. It has excellent electrochemical performance, mainly because the three-dimensional conductive network of RGO and CNT provides strong electron transmission path, rich pore structure, and sulfur is in full contact with the three-dimensional conductive network composed of RGO and CNT.

     

  • loading
  • [1]
    HONG X, JIN J, WU T, et al. A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:14775-14782. doi: 10.1039/C7TA03552G
    [2]
    LIU D, LI Y, ZHENG D, et al. Ammonia-treated ordered mesoporous carbons with hierarchical porosity and nitrogen-doping for lithium-sulfur batteries[J]. Chemistryselect,2017,2(24):7160-7168. doi: 10.1002/slct.201700656
    [3]
    QIU Y, LI W, ZHAO W, et al. High-rate, ultra long cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14(8):4821. doi: 10.1021/nl5020475
    [4]
    WU H, XIA L, REN J, et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries[J]. Electrochimica Acta,2018,278:83-92. doi: 10.1016/j.electacta.2018.05.032
    [5]
    赵桂香, WAIHAFIZ Z A, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学, 2021, 27(6):614-623.

    ZHAO Guixiang, WAIHAFIZ Z A, ZHU Fuliang. Nitrogen-sulfur Co-doped porous carbon preparation and its application in lithium-sulfur batteries[J]. Electrochemical Chemistry,2021,27(6):614-623(in Chinese).
    [6]
    ZHAO Y, BAKENOVA Z, ZHANG Y G, et al. High perfor-mance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries[J]. Ionics,2015,21(7):1925-1930. doi: 10.1007/s11581-015-1376-4
    [7]
    GONG B, SONG X, SHI Y, et al. Understanding the inhibition of the shuttle effect of sulfides (S≤3) in lithium-sulfur batteries by heteroatom-doped graphene: First-principles study[J]. The Journal of Physical Chemistry C,2020,124:3644-3649. doi: 10.1021/acs.jpcc.9b10314
    [8]
    SHAN Z, HE Y, NING L, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Applied Surface Science,2020,539:148209.
    [9]
    黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5):1335-1341.

    HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica,2019,36(5):1335-1341(in Chinese).
    [10]
    LI Q, ZHANG Z, GUO Z, et al. Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core–shell composite[J]. Carbon,2014,78:1-9. doi: 10.1016/j.carbon.2014.05.047
    [11]
    杨玉艳, 周丽丽, 陈兴华, 等. 锂硫电池正极用氮掺杂的多孔碳纤维载体材料的研究[J]. 现代化工, 2021, 41(6):167-171.

    YANG Yuyan, ZHOU Lili, CHEN Xinghua, et al. Nitrogen-doped porous carbon fiber support materials for cathode of lithium sulfur battery[J]. Modern Chemical Industry,2021,41(6):167-171(in Chinese).
    [12]
    YUAN X, LIU B, HOU H, et al. Facile synthesis of mesoporous graphene platelets with in situ nitrogen and sulfur doping for lithium-sulfur batteries[J]. RSC Advances,2017,7(36):22567-22577. doi: 10.1039/C7RA01946G
    [13]
    LI Z, JIANG X, LIU J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries[J]. RSC Advances,2018,8:4503-4513. doi: 10.1039/C7RA12978E
    [14]
    WANG X, LI G, LI M, et al. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries[J]. Journal of Energy Chemistry,2021,53:234-240. doi: 10.1016/j.jechem.2020.05.036
    [15]
    ZHANG H, GAO Q, LI Z, et al. A rGO-based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery[J]. Electrochimica Acta,2020,343:136079. doi: 10.1016/j.electacta.2020.136079
    [16]
    ZHA C, WU D, ZHANG T, et al. A facile and effective sulfur loading method: direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery[J]. Energy Storage Materials,2019,17:118-125. doi: 10.1016/j.ensm.2018.11.020
    [17]
    SHAN L, YURONG C, JING Y, et al. Entrapment of polysulfides by a Ketjen Black & mesoporous TiO2 modified glass fiber separator for high performance lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,779:412-419. doi: 10.1016/j.jallcom.2018.11.261
    [18]
    WU J, LI S, YANG P, et al. S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries[J]. Jour-nal of Alloys and Compounds,2019,783:279-285. doi: 10.1016/j.jallcom.2018.12.316
    [19]
    GUO Y, LI J, PITCHERI R, et al. Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability[J]. Chemical Engineering Journal,2019,355:390-398. doi: 10.1016/j.cej.2018.08.143
    [20]
    WANG F, DING X, SHI R, et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(17):10494-10504. doi: 10.1039/C9TA00544G
    [21]
    LIN H, ZHANG S, ZHANG T, et al. A cathode-integrated sulfur-deficient Co9S8 catalytic interlayer for the reutilization of “Lost” polysulfides in lithium-sulfur batteries[J]. ACS Nano,2019,13(6):7073-7082. doi: 10.1021/acsnano.9b02374
    [22]
    WANG N, CHEN B, QIN K, et al. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function[J]. Nano Energy,2019,60:332-339. doi: 10.1016/j.nanoen.2019.03.060
    [23]
    GUO P, LIU D, LIU Z, et al. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries[J]. Electrochimica Acta,2017,256:28-36. doi: 10.1016/j.electacta.2017.10.003
    [24]
    SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications,2017,8:14627. doi: 10.1038/ncomms14627
    [25]
    CUI Z, ZU C, ZHOU W, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):6926-6931. doi: 10.1002/adma.201601382
    [26]
    ZHOU T, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10(7):1694-1703.
    [27]
    LIU T, SUN X, SUN S, et al. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:684-692. doi: 10.1016/j.electacta.2018.10.168
    [28]
    KOU W, LI X, LIU Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano,2019,13(5):5900-5909. doi: 10.1021/acsnano.9b01703
    [29]
    LI L, REN R, WANG X, et al. High-performance nanostructure Fe2O3 synthesized via novel direct current electric arc method as sulfur-wrapping matrix for lithium-sulfur batteries[J]. International Journal of Energy Research,2022,46(2):1361-1369. doi: 10.1002/er.7253
    [30]
    RAULO A, GUPTA A, SRIVASTAVA R, et al. Excellent electrochemical performance of lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks[J]. Journal of Electroanalyti-cal Chemistry,2020,880:114829.
    [31]
    WANG H, WEI D, ZHENG J, et al. Electrospinning MoS2-decorated porous carbon nanofibers for high-perfor-mance lithium-sulfur batteries[J]. ACS Applied Energy Materials,2020,3(12):11893-11899. doi: 10.1021/acsaem.0c02015
    [32]
    LEI T, LI X, WANG Z, et al. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(4):3707-3713.
    [33]
    BASAK M, RAHMAN M L, AHMED M F, et al. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and size-strain plot: Different precipitating agent approach[J]. Journal of Alloys and Compounds,2022,895:162694. doi: 10.1016/j.jallcom.2021.162694
    [34]
    REN J, XIA L, ZHOU Y, et al. A reduced graphene oxide/nitrogen, phosphorus doped porous carbon hybrid framework as sulfur host for high performance lithium-sulfur batteries[J]. Carbon,2018,140:30-40. doi: 10.1016/j.carbon.2018.08.026
    [35]
    YU J, XIAO J, LI A, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angewandte Chemie,2020,59:13071-13078. doi: 10.1002/anie.202004914
    [36]
    JIAO L, ZHANG C, GENG C, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9(19):1900219. doi: 10.1002/aenm.201900219
    [37]
    LONG Q, PEI L, YI Y, et al. Enhanced cycling performance for lithium-sulfur batteries by a laminated 2 D g-C3N4/graphene cathode interlayer[J]. ChemSusChem,2019,12(1):213-223. doi: 10.1002/cssc.201802449
    [38]
    ZHAO Z, PATHAK R, WANG X, et al. Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery[J]. Electrochimica Acta,2020,364:137117. doi: 10.1016/j.electacta.2020.137117
    [39]
    ZHAO C, CAI S, XIN F, et al. Prussian blue-derived Fe2O3/sulfur composite cathode for lithium-sulfur batteries[J]. Materials Letters,2014,137(15):52-55.
    [40]
    JI A, YJ B, JO B, et al. γ-Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-perfor-mance lithium sulfur battery cathode[J]. Journal of Electroanalytical Chemistry,2020,858:113806. doi: 10.1016/j.jelechem.2019.113806
    [41]
    CHENG Z, SN A, WEI L A, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    [42]
    FANG R, ZHAO S, HOU P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28(17):3374-3382. doi: 10.1002/adma.201506014
    [43]
    MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical communications,2014,50(87):13231-13234. doi: 10.1039/C4CC03410D
    [44]
    ZHU R, LIN S, JIAO J, et al. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery[J]. Ionics,2020,26(16):2325-2334.
    [45]
    ZHANG Y, CHANG S, ZHANG D, et al. Flexible FeS@Fe2O3/CNT composite films as self-supporting anodes for high-performance lithium-ion batteries[J]. Nanotechnology,2021,32(28):285404. doi: 10.1088/1361-6528/abf194
    [46]
    ZOU K, LI N, DAI X, et al. Lightweight free-standing CeF3 nanorod/carbon nanotube composite interlayer for lithium-sulfur batteries[J]. ACS Applied Nano Materials,2020,3(6):5732-5742. doi: 10.1021/acsanm.0c00920
    [47]
    WANG P, ZENG R, YOU L, et al. Graphene-like matrix composites with Fe2O3 and Co3O4 as cathode materials for lithium sulfur batteries[J]. ACS Applied Nano Materials,2020,3(2):1382-1390. doi: 10.1021/acsanm.9b02250
    [48]
    KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nature Communications,2015,6:7278. doi: 10.1038/ncomms8278
    [49]
    PARK G D, JUNG D S, LEE J K, et al. Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries[J]. Chemical Engineering Journal,2019,373:382-392. doi: 10.1016/j.cej.2019.05.038
    [50]
    CHUNG S H, MANTHIRAM A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.
    [51]
    YE C, ZHANG L, GUO C, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials,2017,27:1702524. doi: 10.1002/adfm.201702524
    [52]
    HE W, HE X, DU M, et al. Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as sulfur host for high performance lithium-sulfur batteries[J]. The Journal of Physical Chemistry C,2019,123(26):15924-15934. doi: 10.1021/acs.jpcc.9b02356
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (511) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return