Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585. doi: 10.13801/j.cnki.fhclxb.20220422.001
Citation: WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585. doi: 10.13801/j.cnki.fhclxb.20220422.001

Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests

doi: 10.13801/j.cnki.fhclxb.20220422.001
Funds:  National Key Research and Development Project (2019 YFD1101005); National Natural Science Foundation of China (52178093; 51808017; 51778028)
  • Received Date: 2022-03-02
  • Accepted Date: 2022-04-12
  • Rev Recd Date: 2022-04-12
  • Available Online: 2022-04-22
  • Publish Date: 2023-03-15
  • To investigate the mechanical properties of basalt fiber reinforced foam concrete, the quasi-static tensile and compressive tests were carried out on the prepared 52 groups of specimens, and the effects of basalt fiber volume fraction and fiber length on the tensile and compressive properties of specimens with different densities were experimentally studied. The test results show that the basalt fiber could significantly improve the tensile peak stress (maximum improvement of 737%) and peak strain (maximum improvement of 833%) of specimens. Due to the appearance of pseudo strain hardening phenomenon, the basalt fiber could effectively improve the tensile failure mode of the medium and high density specimens, so as to improve the tensile bearing capacity and deformation ability of specimens. It is found that tensile peak stress and peak strain increase with increasing the fiber volume fraction, and increase first and then decrease with increasing the fiber length. Furthermore, basalt fiber could change the compression failure mode of specimens with the observed trend from longitudinal splitting failure to oblique shear failure and transverse crushing failure, resulting in significant improvement of the compressive bearing capacity and energy absorption ability of low and medium density specimens. In addition, it is observed that increasing the fiber volume content will lead to an increase in the energy absorption (maximum improvement of 328%) of the specimen, which increases first and then decreases with increasing the fiber length.

     

  • loading
  • [1]
    崔玉理, 贺鸿珠. 温度对泡沫混凝土性能影响[J]. 建筑材料学报, 2015, 18(5):836-839, 846. doi: 10.3969/j.issn.1007-9629.2015.05.021

    CUI Yuli, HE Hongzhu. Influence of temperature on performances of foam concrete[J]. Journal of Building Materials,2015,18(5):836-839, 846(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.05.021
    [2]
    李从波, 文梓芸, 殷素红. 大型承重保温夹芯复合墙体的材料选型及模拟[J]. 建筑材料学报, 2013, 16(6):1012-1016.

    LI Congbo, WEN Ziyun, YIN Suhong. Material selection and simulation research of large bearing insulation sandwich composite wall[J]. Journal of Building Materials,2013,16(6):1012-1016(in Chinese).
    [3]
    张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8):54-63.

    ZHANG Yamei, SUN Chao, WANG Shen, et al. Properties and pore structure of foam concrete with different density[J]. Journal of Chongqing University,2020,43(8):54-63(in Chinese).
    [4]
    宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2):398-410.

    SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):398-410(in Chinese).
    [5]
    李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6):1146-1153.

    LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam conrete with different density under uniaxial compression[J]. Journal of Building Materials,2021,24(6):1146-1153(in Chinese).
    [6]
    王武祥. 泡沫混凝土绝干密度与抗压强度的相关性研究[J]. 混凝土世界, 2010(6):50-53.

    WANG Wuxiang. Correlation between absolute dry density and compressive strength of foam concrete[J]. China Concrete,2010(6):50-53(in Chinese).
    [7]
    袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析[J]. 振动与冲击, 2014, 33(17):116-119.

    YUAN Pu, MA Qinyong, ZHANG Haidong. SHPB tests for light weight foam concrete[J]. Journal of Vibration and Shock,2014,33(17):116-119(in Chinese).
    [8]
    刘海燕, 李然. 泡沫混凝土吸能机理试验研究[J]. 成都大学学报(自然科学版), 2010, 29(2):166-167,180.

    LIU Haiyan, LI Ran. Experimental study on energy absorbing mechanism of foam concrete[J]. Journal of Chengdu University (Natural Science),2010,29(2):166-167,180(in Chinese).
    [9]
    刘军, 齐玮, 刘润清, 等. 粉煤灰对泡沫混凝土物理力学性能的影响[J]. 材料导报, 2015, 29(16):111-114.

    LIU Jun, QI Wei, LIU Runqing, et al. Effect of fly ash on physical and mechanical properties of foam concrete[J]. Materials Reports,2015,29(16):111-114(in Chinese).
    [10]
    王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1): 207-215.

    WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials, 2021, 24(1): 207-215(in Chinese).
    [11]
    詹炳根, 郭建雷, 林兴胜. 玻璃纤维增强泡沫混凝土性能试验研究[J]. 合肥工业大学学报(自然科学版), 2009, 32(2):226-229.

    ZHAN Binggen, GUO Jianlei, LIN Xingsheng. Properties of foamed concrete with fibre glass reinforcement[J]. Jour-nal of Hefei University of Technology (Natural Science),2009,32(2):226-229(in Chinese).
    [12]
    王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24):4092-4097.

    WANG Jingwen, WANG Wei. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete[J]. Materials Reports,2019,33(24):4092-4097(in Chinese).
    [13]
    杨瑞环, 霍冀川, 赵星. 玄武岩纤维掺量对泡沫混凝土性能的影响[J]. 西南科技大学学报, 2014, 29(2):29-32, 65. doi: 10.3969/j.issn.1671-8755.2014.02.007

    YANG Ruihuan, HUO Jichuan, ZHAO Xing. The effect of basalt fibre dosage on the properties of foam concrete[J]. Journal of Southwest University of Science and Technology,2014,29(2):29-32, 65(in Chinese). doi: 10.3969/j.issn.1671-8755.2014.02.007
    [14]
    范然森, 程新, 詹炳根. 玄武岩纤维泡沫混凝土性能研究及抗裂评价[J]. 合肥工业大学学报(自然科学版), 2020, 43(9):1223-1228.

    FAN Ransen, CHENG Xin, ZHAN Binggen. Performance study and crack resistance evaluation of basalt fibre foam concrete[J]. Journal of Hefei University of Technology (Natural Science),2020,43(9):1223-1228(in Chinese).
    [15]
    江旋, 季韬, 徐维, 等. 聚丙烯纤维掺量对碱矿渣泡沫混凝土砌块性能影响的研究[J]. 新型建筑材料, 2021, 48(4): 95-98, 114.

    JIANG Xuan, JI Tao, XU Wei, et al. Effect of polypropylene fibre content on behavior of alkali-activated slag foamed concrete block[J]. New Building Materials, 2021, 48(4): 95-98, 114(in Chinese).
    [16]
    杨小芳, 于水军, 高岩, 等. 泡沫混凝土和混凝土耐火极限的比较研究[J]. 火灾科学, 2012, 21(2):78-83. doi: 10.3969/j.issn.1004-5309.2012.02.005

    YANG Xiaofang, YU Shuijun, GAO Yan, et al. Comparison of the fire resistance limits of foamed concrete and concrete[J]. Fire Safety Science,2012,21(2):78-83(in Chinese). doi: 10.3969/j.issn.1004-5309.2012.02.005
    [17]
    周宏元, 于鸿鑫, 王小娟, 等. 玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性[J]. 复合材料学报, 2022, 39(2):695-706.

    ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica,2022,39(2):695-706(in Chinese).
    [18]
    刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438.

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese).
    [19]
    LI H N, LIU P F, LI C, et al. Experimental research on dynamic mechanical properties of metal tailings porous concrete[J]. Construction and Building Materials,2019,213:20-31.
    [20]
    高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21):3620-3629. doi: 10.11896/cldb.18110175

    GAO Shuling, WANG Wenchang. A review on performance and application of strain hardening cementitious compo-sites[J]. Materials Reports,2019,33(21):3620-3629(in Chinese). doi: 10.11896/cldb.18110175
    [21]
    董志芳, 邓明科, 张聪. 纤维织物增强高延性混凝土单轴拉伸性能试验研究[J]. 土木工程学报, 2020, 53(10): 13-25.

    DONG Zhifang, DENG Mingke, ZHANG Cong. Experimental investigation on uniaxial tension behavior of textile-reinforced highly ductile concrete[J]. China Civil Engineering Journal, 2020, 53(10): 13-25(in Chinese).
    [22]
    罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8):1935-1948.

    LUO Honglin, YANG Dingyi, ZHOU Xingyu, et al. Mecha-nical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica,2019,36(8):1935-1948(in Chinese).
    [23]
    周浩, 贾彬, 黄辉. 玄武岩纤维混凝土受拉性能试验研究与分析[J]. 建筑结构, 2020, 50(24):104-109.

    ZHOU Hao, JIA Bin, HUANG Hui. Experimental study and analysis on tensile performance of basalt fiber concrete[J]. Building Structure,2020,50(24):104-109(in Chinese).
    [24]
    MILTZ J, GRUENBAUM G. Evaluation of cushioning pro-perties of plastic foams from compressive measurements[J]. Polymer Engineering & Science,1981,21(15):1010-1014.
    [25]
    TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology,2002,18(5):480-488.
    [26]
    张文武, 张丹, 王珊珊, 等. 吸能材料缓冲性能评价方法综述[J]. 包装工程, 2022, 43(5):143-151.

    ZHANG Wenwu, ZHANG Dan, WANG Shanshan, et al. Review of evaluation methods of cushioning performance of energy absorbing materials[J]. Packaging Engineering,2022,43(5):143-151(in Chinese).
    [27]
    BATOOL F, BINDIGANAVILE V. Microstructural parameters of fiber reinforced cement-based foam and influence on compressive and thermal properties[J]. Journal of Building Engineering,2020,31:101320. doi: 10.1016/j.jobe.2020.101320
    [28]
    陈峰宾, 许斌, 焦华喆, 等. 玄武岩纤维混凝土纤维分布及孔隙结构表征[J]. 中国矿业大学学报, 2021, 50(2):273-280.

    CHEN Fengbin, XU Bin, JIAO Huazhe, et al. Fiber distribution and pore structure characterization of basalt fiber reinforced concrete[J]. Journal of China University of Mining & Technology,2021,50(2):273-280(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (876) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return